This October, the hybrid TDWG 2022 conference will address standards for linking biodiversity data

From 17th to 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia – will run under the theme “Stronger Together: Standards for linking biodiversity data”.

Between 17th and 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia, Bulgaria – will run under the theme “Stronger Together: Standards for linking biodiversity data”.

The event will be hosted by scholarly publisher and technology provider Pensoft, in collaboration with the National Museum of Natural History, and the Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences. This year, the event will be welcoming participants in-person, as well as virtually.

In addition to opening and closing plenaries, the conference will feature 14 symposia and a mix of other formats that include lightning talks, a workshop, and panel discussion, and contributed oral presentations and virtual posters. 

For a seventh year in a row, all abstracts submitted to the annual conference are made publicly available in the dedicated TDWG journal: Biodiversity Information Science and Standards (BISS Journal).

Thus, the abstracts – published ahead of the event itself – are not only permanently and freely available in a ‘mini-paper’ format, but will also provide conference participants with a sneak peek into what’s coming at the much anticipated conference.

Learn more about the unique features of BISS.

***

Register and find more about the TDWG 2022 conference on Pensoft Event Manager.

See the Call for Abstracts and learn how to submit your abstract today.

Visit the TDWG conference website.

***

Ahead, during and after the conference, join the conversation on Twitter via #tdwg2022.

Don’t forget to also follow TDWG (Twitter and Facebook), BISS Journal (Twitter and Facebook) and Pensoft (Twitter and Facebook) on social media.

Novel research seeks to solve environmental challenges in BioRisk’s latest issue

The special issue features 35 studies presented at the International Seminar of Ecology 2021

Guest blog post by Prof. Stephka Chankova, PhD

The new special issue of BioRisk compiles materials presented at the International Seminar of Ecology – 2021. The multidisciplinary nature of modern ecology was demonstrated by the main topics of the Seminar: biodiversity and conservation biology, biotic and abiotic impact on the living nature, ecological risk and bioremediation, ecosystem research and services, landscape ecology, and ecological agriculture.

Research teams from various universities, institutes, organizations, and departments, both from Bulgaria and abroad, took part in the Seminar. Foreign participants included: Environmental Toxicology Research Unit (Egypt), Pesticide Chemistry Department, National Research Centre (Giza, Egypt); National Institute for Agrarian and Veterinary Research (Oeiras, Portugal), Centre for Ecology, Evolution and Environmental Changes (Lisbon, Portugal); Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia).

Biorisk’s latest issue: Current trends of ecology

Some of the reports presented joint research of Bulgarian scientists and scientists from Germany, the Czech Republic, Lithuania, Romania, Slovenia, Spain, and the USA. After assessment by independent reviewers, the articles published in the journal cover the topics presented and discussed at the Seminar. 

A set of reports were focused on the anthropogenic and environmental impacts on the biota. Soil properties were shown as a factor that can modulate the effect of heavy metals, present in chronically contaminated soils. Different ap­proaches to overcome environmental pollution were presented and discussed: zeolites as detoxifying tools, microalgae for the treatment of contaminated water bodies, and a newly developed bio-fertilizer, based on activated sludge combined with a bacte­rial strain with detoxifying and plant growth-promoting properties. The clear need for the enlargement of existing monitoring program by including more bioindicators and markers was pointed out.

It was shown that, by using various markers for the evaluation of environmentally induced stress response at different levels (microbiological, molecular, biochemical), it is possible to gain insights of the organisms’ protection and the mechanisms involved in resistance formation. The contribution of increased DNA repair capacity and AOS to the development of environmental tolerance or adaptation was also shown.

Important results for understanding the processes of photoprotection in either cyanobacteria or algae, and higher plants were obtained by in vitro reconstitution of complexes of stress HliA protein with pigments. The crucial role of the cellular physiological state, as a critical factor in determining the resistance to environmental stress with Q cells was demonstrated.

Several papers were focused on the action of bioactive substances of plants origin. The bioactivity was shown to depend strongly on chemical composition. Origanum vulgare hirtum essential oil was promoted as a promising candidate for the purposes of “green” technologies. Analyzing secondary metabolites of plants, it was shown that their productivity in vitro is a dynamic process closely related to the plant growth and development, and is in close relation with the interactions of the plant with the environment.

Origanum vulgare hirtum. Photo by cultivar413 under a CC-BY 2.0 license

The influence of the agricultural system type on essential oil production and antioxidant activity of industrially-cultivated Rosa damascena in the Rose valley (Bulgaria) was reported, comparing organic vs conventional farming. The rose extracts from organic farming were shown to accumulate more phenolic compounds, corresponding to the higher antioxidant potential of organic roses.

A comparative study, based on official data from the statistics office of the EU and the Member countries, concerning viral infection levels in intensive and organic poultry farming, demonstrated that free-range production had a higher incidence of viral diseases with a high zoonotical potential.

Pollinators of Lavandula angustifolia, as an important factor for optimal production of lavender essential oil, were analyzed. It was concluded that, although lavender growers tend to place beehives in the fields for optimal essential oil production, it was crucial to preserve wild pollinators, as well.

Lavandula angustifolia inflorescence excluded from pollinators.

New data reported that essential oils and alkaloid-rich plant extracts had the strongest acetylcholinesterase inhibitory activity and could be proposed for further testing for insect control.

It was reported that the vegetation diversity of Bulgaria had still not been fully investigated. Grasslands, broad-leaved forests, and wetlands are the best investigated habitats, while data concerning ruderal, shrubland, fringe, and chasmophytic vegetation in Bulgaria are scarce.

Other important topics were reported and discussed in this session: the possibility of pest control using pteromalids as natural enemies of pests in various crops; the main reasons responsible for the population decrease of bumblebees – habitat destruction, loss of floral resources, emerging diseases, and increased use of pesticides (particularly neonicotinoids); the strong impact of temperature and wind on the distribution of zooplankton complexes in Mandra Reservoir, in Southeastern Bulgaria; an alternative approach for the ex-situ conservation of Stachys thracica based on in vitro shoot culture and its subsequent adaptation under ex vitro conditions.

Bombus hortorum/subterraneus collecting nectar in 1991, and B B. wurflenii/lapidarius worker robbing nectar of Gentiana asclepiadea in 2017

New information was presented concerning pre-monitoring geochemical research of river sediments in the area of Ada Tepe gold mining site (Eastern Rhodopes). The obtained results illustrate that the explored landscapes have been influenced by natural geochemical anomalies, as well as, impacted by human activity. The forests habitat diversity of Breznik Municipality was revealed, following the EUNIS Classification and initial data from the Ministry of Environment and Water and the Forestry Management Plans. It was shown that, in addition to the dominant species Quercus dalechampii, Quercus frainetto, Fagus sylvatica, Carpinus betulus, some artificial plantations with Pinus nigra and Pinus sylvestris were also present, as well as non-native species, such as Robinia pseudoacacia and Quercus rubra.

Models for Predicting Solution Properties and Solid-Liquid Equilibrium in Cesium Binary and Mixed Systems were created. The results are of great importance for the development of strategies and programs for nuclear waste geochemical storage. In conclusion, many results in different areas of ecology were presented in the Seminar, followed by interesting discussions. A lot of questions were answered, however many others remained open. A good platform for further discussion will be the next International Seminar of Ecology – 2022, entitled Actual Problems of Ecology.

Major highway in India threatens reptiles and amphibians

“Is it the road that crosses the habitat, or does the habitat cross the road?” ask scientists before agreeing that the wrong road at the wrong place is bound to cause various perils for the local wildlife, habitats and ecosystems.

Is it the road that crosses the habitat, or does the habitat cross the road?” ask scientists at Gauhati University (Assam, India) before agreeing that the wrong road at the wrong place is bound to cause various perils for the local wildlife, habitats and ecosystems. Furthermore, some of those effects may take longer than others to identify and confirm.

This is how the research team of doctoral research fellow Somoyita Sur, Dr Prasanta Kumar Saikia and Dr Malabika Kakati Saikia decided to study roadkill along a 64-kilometre-long stretch of one of the major highways in India: the National Highway 715. 

What makes the location a particularly intriguing choice is that it is where the highway passess between the Kaziranga National Park, a UNESCO World Heritage site in Assam and the North Karbi Anglong Wildlife Sanctuary, thus tempting animals to move to and from the floodplains of Kaziranga and the hilly terrain of the Sanctuary to escape the annual floods or – on a daily basis – in search for food and mating partners.

In the beginning, they looked into various groups, including mammals, birds, reptiles, and amphibians, before realising that the death toll amongst frogs, toads, snakes and lizards was indeed tremendous, yet overlooked. Their findings were recently published in the peer-reviewed scholarly journal Nature Conservation.

“To our surprise, the death toll within that 64-kilometre stretch of the highway was indeed dramatic. We estimated that it has been over 6000 animals that have fallen under the wheels of motor vehicles within a single year. Prior to our study, similar research had focused on big charismatic species like the tiger, elephant and rhino, so when we took into account also the smaller animals: frogs, toads, snakes and lizards, the count went through the roof. Thus, we decided to make smaller species the focus of our work,”

comments Sur.

In conclusion, the scientists agree that roads and highways cannot be abandoned or prevented from construction and expansion, as they are crucial in connecting people and transporting goods and necessities. 

“Yet, we can definitely put some effort into designing and constructing them in a scientifically sound, eco-friendly and sustainable manner, so that they don’t become the bane for our ecosystems,”

the team concludes.

***

Research article:

Sur S, Saikia PK, Saikia MK (2022) Speed thrills but kills: A case study on seasonal variation in roadkill mortality on National highway 715 (new) in Kaziranga-Karbi Anglong Landscape, Assam, India. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 87-104. https://doi.org/10.3897/natureconservation.47.73036

***

Follow Nature Conservation on Twitter and Facebook.

Lost South American wildflower “extinctus” rediscovered (but still endangered)

Long believed to have gone extinct, Gasteranthus extinctus was found growing at Bosque y Cascada Las Rocas, a private reserve in coastal Ecuador.

Scientific names get chosen for lots of reasons: they can honor an important person, or hint at what an organism looks like or where it’s from. For a tropical wildflower first described by scientists in 2000, the scientific name “extinctus” was a warning. The orange wildflower had been found 15 years earlier in an Ecuadorian forest that had since been largely destroyed; the scientists who named it suspected that by the time they named it, it had already become extinct. But in a new paper in PhytoKeys, researchers report the first confirmed sightings of Gasteranthus extinctus in 40 years.

Long believed to have gone extinct, Gasteranthus extinctus was found growing next to a waterfall at Bosque y Cascada Las Rocas, a private reserve in coastal Ecuador containing a large population of the endangered plant. Photo by Riley Fortier.

Extinctus was given its striking name in light of the extensive deforestation in western Ecuador,” says Dawson White, a postdoctoral researcher at Chicago’s Field Museum and co-lead author of the paper. “But if you claim something’s gone, then no one is really going to go out and look for it anymore. There are still a lot of important species that are still out there, even though overall, we’re in this age of extinction.”

The bright orange flowers of the Ecuadorian cloud forest herb Gasteranthus extinctus, long believed to have gone extinct, light up the forest understory as if begging to be seen. Photo by Riley Fortier

The rediscovered plant is a small forest floor-dweller with flamboyant neon-orange flowers. 

“The genus name, Gasteranthus, is Greek for ‘belly flower.’ Their flowers have a big pouch on the underside with a little opening top where pollinators can enter and exit,” says White.

Photo by by Riley Fortier

G. extinctus is found in the foothills of the Andes mountains, where the land flattens to a plane that was once covered in cloud forest. The region, called the Centinela Ridge, is notorious among biologists for being home to a unique set of plants that vanished when its forests were almost completely destroyed in the 1980s. The late biologist E. O. Wilson even named the phenomenon of organisms instantly going extinct when their small habitat is destroyed “Centinelan extinction.”

Part of the team departs the field for the day with bags full of rare plant specimens, surrounded by the typical Centinelan landscape of tall, remnant trees scattered across pasture and farmland. Photo by Dawson White

The story of Centinela was also an alarm to draw attention to the fact that over 97% of the forests in the western half of Ecuador have been felled and converted to farmland. What remains is a fine mosaic of tiny islands of forest within a sea of bananas and a handful of other crops.

Sunset on the peak of Centinela Ridge in coastal Ecuador, near to where the first collections of the endangered wildflower Gasteranthus extinctus were made some 40 years ago. Photo by Nigel Pitman

“Centinela is a mythical place for tropical botanists,” says Pitman. “But because it was described by the top people in the field, no one really double-checked the science. No one went back to confirm that the forest was gone and those things were extinct.”

Part of the team that rediscovered Gasteranthus extinctus traverses steep ravines in the forests of coastal Ecuador in search of rare plants. From left: Washington Santillán, Sr. Hermogenes, Alix Lozinguez, and Nicolás Zapata. Photo by Thomas L.P. Couvruer

But around the time that Gasteranthus extinctus was first described in 2000, scientists were already showing that some victims of Centinelan extinction weren’t really extinct. Since 2009, a few scientists have mounted expeditions looking for G. extinctus was still around, but they weren’t successful. When White and Pitman received funding from the Field Museum’s Women’s Board to visit the Centinela Ridge, the team had a chance to check for themselves. 

Starting in the summer of 2021, they began combing through satellite images trying to identify primary rainforest that was still intact (which was difficult, White recalls, because most of the images of the region were obscured by clouds). They found a few contenders and assembled a team of ten botanists from six different institutions in Ecuador, the US, and France, including Juan Guevara, Thomas Couvreur, Nicolás Zapata, Xavier Cornejo, and Gonzalo Rivas. In November of 2021, they arrived at Centinela.

A sign points out the community of Centinela del Pichincha in coastal Ecuador, likely the namesake of the Centinela Ridge. Photo by Nigel Pitman

“It was my first time planning an expedition where we weren’t sure we’d even enter a forest,” says Pitman. “But as soon as we got on the ground we found remnants of intact cloud forest, and we spotted G. extinctus on the first day, within the first couple hours of searching. We didn’t have a photo to compare it to, we only had images of dried herbarium specimens, a line drawing, and a written description, but we were pretty sure that we’d found it based on its poky little hairs and showy “pot-bellied” flowers.”

Pitman recalls mixed emotions upon the team finding the flower. “We were really excited, but really tentative in our excitement — we thought, ‘Was it really that easy?’” he says. “We knew we needed to check with a specialist.”

From left: Ecuadorian botanists Juan Ernesto Guevara, Xavier Cornejo, and Gonzalo Rivas after a successful day of plant collecting on the Centinela Ridge in coastal Ecuador. Photo by Nigel Pitman

The researchers took photos and collected some fallen flowers, not wanting to harm the plants if they were the only ones remaining on Earth. They sent the photos to taxonomic expert John Clark, who confirmed that, yes, the flowers were the not-so-extinct G. extinctus. Thankfully, the team found many more individuals as they visited other forest fragments, and they collected museum specimens to voucher the discovery and leaves for DNA analysis. The team was also able to validate some unidentified photos posted on the community science app iNaturalist as G. extinctus.

After the field, the work isn’t finished! The team presses and preserves the specimens collected during the day. Photo by Riley Fortier

The plant will keep its name, says Pitman, because biology’s code of nomenclature has very specific rules around renaming an organism, and G. extinctus’s resurrection doesn’t make the cut.

While the flower remains highly endangered, the expedition found plenty of reasons for hope, the researchers say. 

“We walked into Centinela thinking it was going to break our heart, and instead we ended up falling in love,” says Pitman. “Finding G. extinctus was great, but what we’re even more excited about is finding some spectacular forest in a place where scientists had feared everything was gone.”

Botanist Riley Fortier admires the plantations, pastures, and remnants of old cloud forest that cover Centinela Ridge in coastal Ecuador. Photo by Dawson White

The team is now working with Ecuadorian conservationists to protect some of the remaining fragments where G. extinctus and the rest of the spectacular Centinelan flora lives on. 

“Rediscovering this flower shows that it’s not too late to turn around even the worst-case biodiversity scenarios, and it shows that there’s value in conserving even the smallest, most degraded areas,” says White. 

“It’s an important piece of evidence that it’s not too late to be exploring and inventorying plants and animals in the heavily degraded forests of western Ecuador. New species are still being found, and we can still save many things that are on the brink of extinction.”

Research article:

Pitman NCA, White DM, Guevara Andino JE, Couvreur TLP, Fortier RP, Zapata JN, Cornejo X, Clark JL, Feeley KJ, Johnston MK, Lozinguez A, Rivas-Torres G (2022) Rediscovery of Gasteranthus extinctus L.E.Skog & L.P.Kvist (Gesneriaceae) at multiple sites in western Ecuador. PhytoKeys 194: 33–46. https://doi.org/10.3897/phytokeys.194.79638 

Citizen science data crucial to understand wildlife roadkill

In a first for science, researchers set out to analyze over 10 years of roadkill records in Flanders, Belgium, using data provided by citizen scientists.

The road is a dangerous place for animals: they can easily get run over, which can seriously affect wildlife diversity and populations in the long term. There is also a human economic cost and possible injury or even death in these accidents, while crashing into heavier animals or trying to avoid them on the road.

Making roads safer for both animals and people starts with a simple first step: understanding when, where, and how many animals get run over. This knowledge can help protect specific species, for example by using warning signs, preventing access to the roads for animals, creating overpasses and underpasses, or closing roads. Wildlife roadkill data can also help monitor other trends, such as population dynamics, species distribution, and animal behavior.

Thanks to citizen science platforms, obtaining this kind of data is no longer a task reserved for scientists. There are now dozens of free, easy-to-use online systems, where anyone can record wildlife collision accidents or roadkill, contributing to a fuller picture that might later be used to inform policy measures.

One such project is the Flemish Animals under wheels, where users can register the roadkill they saw, adding date, time and geolocation online or by using the apps. The data is stored in the online biodiversity database Waarnemingen.be, the Flemish version of the international platform Observation.org

Between 2008 and 2020, the project collected almost 90,000 roadkill records from Flanders, Belgium, registered by over 4,000 citizen scientists. Roadkill recording is just a small part of their nature recording activities – the multi-purpose platform which also allows the registration of living organisms. This is probably why the volunteers have remained engaged with the project for over 6 years now.

In a first for science, researchers from Natuurpunt Studie, the scientific institute linked to the largest Nature NGO in Flanders, with support from the Department of Environmental and Spatial Development, set out to analyze over 10 years of roadkill records in the region, using data provided by citizen scientists. In their study, published in the peer-reviewed journal Nature Conservation, they focused on 17 key species of mammals and their fate on the roads of Flanders. 

The researchers analyzed data on 145,000 km of transects monitored, which resulted in records of 1,726 mammal and 2,041 bird victims. However, the majority of the data – over 60,000 bird and mammal roadkill records – were collected opportunistically, where opportunistic data sampling favors larger or more “enigmatic” species. Hedgehogs, red foxes and red squirrels were the most frequently registered mammal roadkill victims.  

In the last decade, roadkill incidents in Flanders have diminished, the study found, even though search effort increased. This might be the result of effective road collision mitigation, such as fencing, crossing structures, or animal detection systems. On the other hand, it could be a sign of declining populations among those animals that are most prone to being killed by vehicles. More research is needed to understand the exact reason. Over the last 11 years, roadkill records of the European polecat showed a significant relative decrease, while seven species, including the roe deer and wild boar, show a relative increase in recorded incidents.

There seems to be a clear influence of the COVID-19 pandemic on roadkill patterns for some species. Restrictions in movement that followed likely led simultaneously to fewer casualties and a decrease in the search effort. 

The number of new observations submitted to Waarnemingen.be continues to increase year after year, with data for 2021 pointing to about 9 million. Even so, the scientists warn that those recorded observations “are only the tip of the iceberg.”

 “Citizen scientists are a very valuable asset in investigating wildlife roadkill. Without your contributions, roadkill in Flanders would be a black box,”

the researchers conclude.

***

Research paper:

Swinnen KRR, Jacobs A, Claus K, Ruyts S, Vercayie D, Lambrechts J, Herremans M (2022) ‘Animals under wheels’: Wildlife roadkill data collection by citizen scientists as a part of their nature recording activities. In: Santos S, Grilo C, Shilling F, Bhardwaj M, Papp CR (Eds) Linear Infrastructure Networks with Ecological Solutions. Nature Conservation 47: 121-153. https://doi.org/10.3897/natureconservation.47.72970

***

The research article is part of the Special Issue: “Linear Infrastructure Networks with Ecological Solutions“, which collates 15 research papers reporting on studies presented at the IENE2020 conference.

***

Follow Nature Conservation on Twitter and Facebook.

New, possibly arboreal rice rat species discovered in Ecuador

Three expeditions led an international research team to the nearly inaccessible Cordillera de Kutukú in southeastern Ecuador to find just a single specimen of the previously unknown species

New rat species of the little known and rare genus Mindomys described: Three expeditions led an international research team with participation from the Leibniz Institute for the Analysis of Biodiversity Change (LIB) to the Cordillera de Kutukú, an isolated mountain range in Ecuador, to find just one specimen of the previously unknown species. The find in the Amazonian side of the Andes underlines the valuable biological role of this mountainous region.

Drawing of the new species Mindomys kutuku. © Glenda Pozo

“In total, the expeditions to the Kutukú region in southeastern Ecuador involved 1,200 trap nights, but only one specimen of the new species Mindomys kutuku was found,” says Dr. Claudia Koch, curator of herpetology at the LIB, Museum Koenig Bonn, explaining the effort that went into locating the rare animal. From the collected specimen, the dry skin, skeleton and tissue were preserved for the collections. Preservation will allow future research to detect environmental changes, learn more about the ecology of the animals and plants – and securely document the new species description, which was published in late February in the prestigious journal Evolutionary Systematics.

The rice rat genus Mindomys was previously considered monotypic and included only the type species Mindomys hammondi. This species is known from only a few specimens, all of which were collected in the foothill forests of the Andes in northwestern Ecuador.

Using computed tomography images obtained for the new species at LIB and for the holotype (specimen from which a species was described) of M. hammondi at the Natural History Museum in London, the researchers Jorge Brito of the Instituto Nacional de la Biodiversidad (INABIO), Claudia Koch, Nicolás Tinoco from the Pontificia Universidad Católica del Ecuador (PUCE) and Ulyses Pardiñas from the Instituto de Diversidad y Evolución del Sur (IDEAus-CONICET) were able to compare the skulls of the two species in great detail in a 3D model and distinguish between the two species.

According to Jorge Brito, INABIO’s mammal curator, the new species is easily distinguished from Mindomys hammondi by a number of anatomical features: “These include larger jugals, “wings” of the parietal bone extending to the zygomatic roots, larger otic capsules, narrow zygomatic plates almost without upper free borders, a posteriorly oriented foramen magnum (large occipital hole), larger molars and an accessory root of the first upper molar.”

The adult male of M. kutuku measures just under 35 cm from snout to tip of tail, of which the tail makes up about 20 cm. It has a dark reddish-brown dorsal coloration and a pale yellow ventral fur.

Since the only specimen found was captured with the help of a ground trap set, it could not be observed in its habitat. Thus, as with its sister species M. hammondi, which was described in 1913, virtually nothing is known about the natural history of the new species. The scientists suspect that both of them could be arboreal species. A tail that is significantly longer than the body length and also covered with long hairs could be two features that indicate an arboreal lifestyle. However, aboreality is the least studied way of life within the New World mice and a reliable study of the anatomical aspects typical of this way of life is still lacking.

Previously, Mindomys records were restricted to the western Andean foothills of Ecuador. The Kutukú material now shows that the genus also occurs on the Amazonian side of the Andes and underscores the valuable biological importance of the isolated mountain ranges in eastern Ecuador.

Research article:

Brito J, Koch C, Tinoco N, Pardiñas UFJ (2022) A new species of Mindomys (Rodentia, Cricetidae) with remarks on external traits as indicators of arboreality in sigmodontine rodents. Evolutionary Systematics 6(1): 35-55. https://doi.org/10.3897/evolsyst.6.76879

Follow Evolutionary Systematics on Facebook and Twitter.

First-ever fish species described by a Maldivian scientist

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.

Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative

Originally published by the California Academy of Sciences

Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.

The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.

Scientists from the California Academy of Sciences, the University of Sydney, the Maldives Marine Research Institute (MMRI), and the Field Museum collaborated on the discovery as part of the Academy’s Hope for Reefs initiative aimed at better understanding and protecting coral reefs around the world.

“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”

says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.

First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives. 

In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species. 

Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.  

“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”

says lead author and University of Sydney doctoral student Yi-Kai Tea. 

Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade. 

“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”

says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.

Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described. 

This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher.
Photo by Yi-Kai Tea.

For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs. 

“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”

says Rocha says

“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”

adds Najeeb.

***

Research article:

Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139

***

Follow ZooKeys on Twitter and Facebook.

Image recognition to the rescue of natural history museums by enabling curators to identify specimens on the fly

New Research Idea, published in RIO Journal presents a promising machine-learning ecosystem to unite experts around the world and make up for lacking taxonomic expertise.

In their Research Idea, published in Research Ideas and Outcomes (RIO Journal), Swiss-Dutch research team present a promising machine-learning ecosystem to unite experts around the world and make up for lacking expert staff

Guest blog post by Luc Willemse, Senior collection manager at Naturalis Biodiversity Centre (Leiden, Netherlands)

Imagine the workday of a curator in a national natural history museum. Having spent several decades learning about a specific subgroup of grasshoppers, that person is now busy working on the identification and organisation of the holdings of the institution. To do this, the curator needs to study in detail a huge number of undescribed grasshoppers collected from all sorts of habitats around the world. 

The problem here, however, is that a curator at a smaller natural history institution – is usually responsible for all insects kept at the museum, ranging from butterflies to beetles, flies and so on. In total, we know of around 1 million described insect species worldwide. Meanwhile, another 3,000 are being added each year, while many more are redescribed, as a result of further study and new discoveries. Becoming a specialist for grasshoppers was already a laborious activity that took decades, how about knowing all insects of the world? That’s simply impossible. 

Then, how could we expect from one person to sort and update all collections at a museum: an activity that is the cornerstone of biodiversity research? A part of the solution, hiring and training additional staff, is costly and time-consuming, especially when we know that experts on certain species groups are already scarce on a global scale. 

We believe that automated image recognition holds the key to reliable and sustainable practises at natural history institutions. 

Today, image recognition tools integrated in mobile apps are already being used even by citizen scientists to identify plants and animals in the field. Based on an image taken by a smartphone, those tools identify specimens on the fly and estimate the accuracy of their results. What’s more is the fact that those identifications have proven to be almost as accurate as those done by humans. This gives us hope that we could help curators at museums worldwide take better and more timely care of the collections they are responsible for. 

However, specimen identification for the use of natural history institutions is still much more complex than the tools used in the field. After all, the information they store and should be able to provide is meant to serve as a knowledge hub for educational and reference purposes for present and future generations of researchers around the globe.

This is why we propose a sustainable system where images, knowledge, trained recognition models and tools are exchanged between institutes, and where an international collaboration between museums from all sizes is crucial. The aim is to have a system that will benefit the entire community of natural history collections in providing further access to their invaluable collections. 

We propose four elements to this system: 

  1. A central library of already trained image recognition models (algorithms) needs to be created. It will be openly accessible, so any other institute can profit from models trained by others.
Mock-up of a Central Library of Algorithms.
  1. A central library of datasets accessing images of collection specimens that have recently been identified by experts. This will provide an indispensable source of images for training new algorithms.
Mock-up of a Central Library of Datasets.
  1. A digital workbench that provides an easy-to-use interface for inexperienced users to customise the algorithms and datasets to the particular needs in their own collections. 
  2. As the entire system depends on international collaboration as well as sharing of algorithms and datasets, a user forum is essential to discuss issues, coordinate, evaluate, test or implement novel technologies.

How would this work on a daily basis for curators? We provide two examples of use cases.

First, let’s zoom in to a case where a curator needs to identify a box of insects, for example bush crickets, to a lower taxonomic level. Here, he/she would take an image of the box and split it into segments of individual specimens. Then, image recognition will identify the bush crickets to a lower taxonomic level. The result, which we present in the table below – will be used to update object-level registration or to physically rearrange specimens into more accurate boxes. This entire step can also be done by non-specialist staff. 

Mock-up of box with grasshoppers mentioned in the above table

Results of automated image recognition identify specimens to a lower taxonomic level.

Another example is to incorporate image recognition tools into digitisation processes that include imaging specimens. In this case, image recognition tools can be used on the fly to check or confirm the identifications and thus improve data quality.

Mock-up of an interface for automated taxon identification. 

Using image recognition tools to identify specimens in museum collections is likely to become common practice in the future. It is a technical tool that will enable the community to share available taxonomic expertise. 

Using image recognition tools creates the possibility to identify species groups for which there is very limited to none in-house expertise. Such practises would substantially reduce costs and time spent per treated item. 

Image recognition applications carry metadata like version numbers and/or datasets used for training. Additionally, such an approach would make identification more transparent than the one carried out by humans whose expertise is, by design, in no way standardised or transparent.

*

Follow RIO Journal on Twitter and Facebook.

*

Research publication:

Greeff M, Caspers M, Kalkman V, Willemse L, Sunderland BD, Bánki O, Hogeweg L (2022) Sharing taxonomic expertise between natural history collections using image recognition. Research Ideas and Outcomes 8: e79187. https://doi.org/10.3897/rio.8.e79187

Endangered new orchid discovered in Ecuador

The plant – unique with its showy, intense yellow flowers – was described by Polish orchidologists in collaboration with an Ecuadorian company operating in orchid research, cultivation and supply.

An astounding new species of orchid has been discovered in the cloud rainforest of Northern Ecuador. Scientifically named Maxillaria anacatalina-portillae, the plant – unique with its showy, intense yellow flowers – was described by Polish orchidologists in collaboration with an Ecuadorian company operating in orchid research, cultivation and supply. 

A specimen of the newly described orchid species Maxillaria anacatalina-portillae in its natural habitat. Photо by Alex Portilla

Known from a restricted area in the province of Carchi, the orchid is presumed to be a critically endangered species, as its rare populations already experience the ill-effects of climate change and human activity. The discovery was aided by a local commercial nursery, which was already cultivating these orchids. The study is published in the open-access journal PhytoKeys.

During the past few years, scientists from the University of Gdańsk (Poland) have been working intensely on the classification and species delimitations within the Neotropical genus Maxillaria – one of the biggest in the orchid family. They have investigated materials deposited in most of the world’s herbarium collections across Europe and the Americas, and conducted several field trips in South America in the search of the astonishing plants.

The newly described orchid species Maxillaria anacatalina-portillae. Photо by Hugo Medina

The first specimens of what was to become known as the new to science Maxillaria anacatalina-portillae were collected by Alex Portilla, photographer and sales manager at Ecuagenera, an Ecuadorian company dedicated to orchid research, cultivation and supply, on 11th November 2003 in Maldonado, Carchi Province (northern Ecuador). There, he photographed the orchid in its natural habitat and then brought it to the greenhouses of his company for cultivation. Later, its offspring was offered at the commercial market under the name of a different species of the same genus: Maxillaria sanderiana ‘xanthina’ (‘xanthina’ in Latin means ‘yellow’ or ‘red-yellow’). 

In the meantime, Prof. Dariusz L. Szlachetko and Dr. Monika M. Lipińska would encounter the same intriguing plants with uniquely colored flowers on several different occasions. Suspecting that they may be facing an undescribed taxon, they joined efforts with Dr. Natalia Olędrzyńska and Aidar A. Sumbembayev, to conduct additional morphological and phylogenetic analyses, using samples from both commercial and hobby growers, as well as crucial plants purchased from Ecuagenera that were later cultivated in the greenhouses of the University of Gdańsk.

As their study confirmed that the orchid was indeed a previously unknown species, the scientists honored the original discoverer of the astonishing plant by naming it after his daughter: Ana Catalina Portilla Schröder.

Research paper:

Lipińska MM, Olędrzyńska N, Portilla A, Łuszczek D, Sumbembayev AA, Szlachetko DL (2022) Maxillaria anacatalinaportillae (Orchidaceae, Maxillariinae), a new remarkable species from Ecuador. PhytoKeys 190: 15-33. https://doi.org/10.3897/phytokeys.190.77918

Rare, protected orchid thrives in a military base in Corsica

Counting over 155,000 individuals, the population is a world precedent. Globally, this orchid can only be found in the south of France, Italy, and along the east coast of the Adriatic.

In Corsica, away from the eyes of locals and tourists, hides a population of unprecedented proportions of a rare and protected orchid: the neglected Serapias (Serapiasneglecta). In a closed military base in the east of the island, researchers discovered 155,000 individuals of the plant.

Globally, this orchid can only be found in the south of France (including Corsica), Italy, and along the east coast of the Adriatic, but none of its known populations has been as abundant as the one documented in Solenzara.

High density of Serapias neglecta on the air base. Photo by Margaux Julien (Ecotonia)

Margaux Julien, Dr Bertrand Schatz, Simon Contant, and Gérard Filippi, researchers from the Center of Functional Ecology and Evolution (CEFE) and Ecotonia consultancy,came across this population while studying plant diversity in the Solenzara air base. Their research, published in Biodiversity Data Journal, documented impressive plant richness, including 12 other orchid species.

The maintenance of the closed military area turned out to be really favourable to the development of orchids. The flower was abundant around the edges of runways and on lawns near military buildings.

Serapias neglecta. Photo by Margaux Julien (Ecotonia)

“Мilitary bases are important areas for biodiversity because they are closed to the public, are not heavily impacted and these areas have soils that are often poorly fertilised and untreated due to old installations, so they often have high biodiversity,” the researchers say in their study.

The meadows around the airport are regularly mowed for security reasons, which allows orchids to thrive in a low vegetation environment with little competition. In addition, the history of the land with its position on the old Travo river bed favours low vegetation, providing rocky ground just a few centimetres beneath the soil.

“The case of S. neglecta is particularly remarkable, because this species benefits from a national protection status and it is a sub-endemic species with a very localised distribution worldwide,” the research team writes. Moreover, the species is classified as near threatened in the World and European Red Lists of the International Union for Conservation of Nature.

The Ecotonia consultancy also did several inventories on the air base, finding biodiversity of rare richness: 552 species of plants, including 19 with protected status in France. Within only 550 ha, they found 23% of the plant species distributed in Corsica. Among these are some very rare plants, as well as endangered species such as the gratiole (Gratiola officinalis) and Anthemis arvensis subsp. incrassate, a subspecies of the corn chamomile.

Serapias neglecta. Photo by Bertrand Schatz

The Solenzara military base hides rich floristic diversity thanks to its history, management, and the lack of public access. While the Corsican coastline is suffering from urbanisation, this sector is a testament to the local flora, featuring several species with conservation status.

The protection of this richness is crucial. “If logistical developments are carried out on this base, they will have to favour the conservation of this exceptional floristic biodiversity, and, in particular of this particularly abundant orchid. Military bases are a great opportunity for the conservation of species and would benefit from enhancing their natural heritage,” the researchers conclude.

Research article:

Julien M, Schatz B, Contant S, Filippi G (2022) Flora richness of a military area: discovery of a remarkable station of Serapias neglecta in Corsica. Biodiversity Data Journal 10: e76375. https://doi.org/10.3897/BDJ.10.e76375