Wildlife on the highway to hell: Roadkill in the largest wetland, Pantanal region, Brazil

Adult individual of Erythrolamprus aesculapii captured in roadside habitats of BR-262. Photo by Michel Passos

Scientists provide crucial data to prompt further conservation and safety measures at the notorious BR-262 highway

Having systematically monitored wild animals killed on the Brazilian federal highway BR-262, which passes through the Pantanal region, a research team from the Federal University of Mato Grosso do Sul, Brazil, published their data concerning birds and reptiles in the open access journal Check List.

Apart from information crucial for future conservation activities, the paper provides new and unexpected roadkill records, including the Black-and-white hawk-eagle.

Authored by Wagner Fischer and his colleagues Raquel Faria de Godoi and Antonio Conceição Paranhos Filho, the article is part of the first dataset of vertebrate mortality in the region. A separate paper of theirs is planned to present the data concerning mammals gathered during the same survey, which took place between 1996 and 2000.

An adult individual of Xenodon matogrossensis captured in roadside habitats of BR-262. Photo by Cyntia Santos.

Having mapped bird and reptile roadkill on the highway between the cities of Campo Grande and Corumbá in the Brazilian savannah, the team reports a total of 930 animals representing 29 reptile and 47 bird species. In addition, the data provide the first regional geographic record of the colubrid snake Hydrodynastes bicinctus.

The researchers conclude that the species richness observed in the road-killed animals clearly confirms earlier concerns about wildlife-vehicle collisions in the Pantanal region. Such accidents lead to long-term and chronic impact on both wildlife and road safety.

“Mitigation of wildlife-vehicle collisions on this road continues to claim urgency for biodiversity conservation and for human and animal safety and care,” say the authors.

“For managers, the main goal should be to determine target species of greatest concern, focusing on those vulnerable to local extinction or those which represent major risks of serious accidents.”

In the past, the team’s dataset had already been used as a guide to road fauna management. In particular, it was used by government road managers when planning animal overpassess and underpassess equipped with roadside fences as part of the long-term project Programa Estrada Viva: BR-262. So far, however, only some of the less efficient safety methods, such as road signs and lowered speed limits, have been applied at the most critical points.

Over the past several years, a few independent studies have been conducted to monitor roadkill in a similar manner. Two of them (2010 and 2017) looked into mammal-vehicle collisions, while the third recorded reptiles and birds as well. All of them serve to demonstrate that BR-262 continues to be a major cause for the regional wildlife mortality, which in turn increases the risks of serious accidents.

“BR-262 keeps its inglorious fame as a highway to hell for human and wild lives,” points out lead author Wagner Fischer.

Roadkill on the BR-262 highway, Pantanal region, Brazil. Photos by Ricardo Fraga and Wagner Fischer.

###

Original source:

Fischer W, Godoi RF, Filho ACP (2018) Roadkill records of reptiles and birds in Cerrado and Pantanal landscapes. Check List 14(5): 845-876. https://doi.org/10.15560/14.5.845

The first drywood termite known to use snapping stick-like mandibles to defend its colony

Tasked to defend the colony from attackers, the specialised soldier caste in some termite species has evolved various impressive mechanisms, including plug-like heads – meant to block intruding ants trying to invade their lairs, and mouthparts designed to bite and pierce.

Still, there are even more spectacular soldiers, such as a recently discovered drywood termite species, whose unique long and slender, stick-like snapping mandibles produce one of the highest acceleration speeds measured in a living organism. Rather than bite, these peculiar ‘jaws’ deliver powerful strikes at enemies bold enough to stand in the way of the soldier termite and its colony.

The scientists describe the new termite’s specialty in detail:

“Roisinitermes employs a unique strategy of snapping, achieved by long and slender mandibles pressed against each other in a defensive encounter. When this potential energy is released, the left mandible springs over the right and the resultant snap is forced onto the opponent if it is in the path of the strike.”

Discovered in Cameroon, this striking species is the first drywood termite found to rely on snapping mandibles as a defense strategy. Given that until now there had been a single subfamily (Termitinae) known to have developed such, the very existence of the new insect poses a whole new set of questions before scientists. Have snapping mandibles evolved independently in two evolutionary lineages? Or, is it that these groups share a distant kin relationship which has gone unnoticed for that long?

The new drywood termite, which is also assigned to a new genus, is named Roisinitermes ebogoensis, and is described in the open access journal ZooKeys by an international team of researchers, led by Dr Rudolf Scheffrahn of the Institute for Food and Agricultural Sciences at University of Florida, Davie, USA. Although this particular species is not thought to be a pest, some drywood termites cause serious damage to wooden structures around the world.

Both colonies studied by the scientists were found near the Ebogo II village, which also stands behind the name of the species. The first unusual colony to draw the attention of the scientists was collected from a forest on an island in the Nyong River, where it lived in a thin (3 cm) and long (over 3 m) broad-leaf tree branch suspended from a canopy. The second one – in a 15-mm thick dead liana branch hanging from a tree in a nearly pristine rainforest.

The team expects that future research will shed more light on the origins and evolution of the newly discovered termite.

###

Original source:

Scheffrahn RH, Bourguignon T, Akama PD, Sillam-Dussès D, Šobotník J (2018) Roisinitermes ebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae). ZooKeys 787: 91-105. https://doi.org/10.3897/zookeys.787.28195

New light on the controversial question of species abundance and population density

Inspired by the negative results in the recently published largest-scale analysis of the relation between population density and positions in geographic ranges and environmental niches, Drs Jorge Soberon and Andrew Townsend Peterson of the University of Kansas, USA, teamed up with Luis Osorio-Olvera, National University of Mexico (UNAM), and identified several issues in the methodology used, able to turn the tables in the ongoing debate. Their findings are published in the innovative open access journal Rethinking Ecology.

Both empirical work and theoretical arguments published and cited over the last several years suggest that if someone was to take the distributional range of a species – be it animal or plant – and draw lines starting at the edges of the space inwards, they would find the species’ populations densest at the intersection of those lines. However, when the team of Tad Dallas, University of Helsinki, Finland, analysed a large dataset of 118,000 populations, equating to over 1,400 species of birds, mammals, and trees, they found no such relationship.

Having analysed the analysis, the American-Mexican team concluded that despite being based on an unprecedented volume of data, the earlier study was missing out some important points.

Firstly, the largest dataset used by Tad and his team comprises observational data which had not required a certain sampling protocol or a plan. Without any standard in use, it is easy to imagine that the observations would be predominantly coming from people around and near cities, hence strongly biased.

Additionally, the scientists note that the analysis largely disregards parts of species’ geographic distributions for which there were no abundant data. As a result, the range of a species could be narrowed down significantly and its centroid – misplaced. Meanwhile, the population would appear denser on what appears to be the periphery of the area.

Similar issue is identified in the localisation of populations in the environmental space, where once again their range turned out to have been represented as significantly smaller, when compared to data available from the International Union for Conservation of Nature (IUCN) and the Global Biodiversity Information Facility (GBIF).

Further, a closer look into the supplementary materials provided revealed that the precision of the population-density data was not scalable with the climate data. As a result, it is likely that multiple abundance data falls within a single climate pixel.

In conclusion, the authors note that in order to comprehensively study the abundance of a species’ populations, one needs to take into consideration a number of factors lying beyond the scope of either of the papers, including human impact.

“We suggest that this important question remains far from settled,” they say.

###

Original source:

Soberón J, Peterson TA, Osorio-Olvera L (2018) A comment on “Species are not most abundant in the centre of their geographic range or climatic niche”. Rethinking Ecology 3: 13-18. https://doi.org/10.3897/rethinkingecology.3.24827

Towards untangling the ‘antennal grabbing’ phenomenon in mating cuckoo bees

Scientists report this behavior for the first time in the genus Nomada, following both lab and field observations in Germany

One can seldom spot a cuckoo bee, whose peculiar kleptoparasitic behaviour includes laying eggs in the nests of a certain host bee species, let alone a couple mating.

Nevertheless, German scientists – Dr. Matthias Schindler, University of Bonn, Michaela Hofmann and Dr. Susanne S. Renner of the University of Munich, and Dr. Dieter Wittmann, recently managed to record copulation in three different cuckoo bee species in the genus Nomada.

Intriguingly, in field and lab settings alike, the observed couples demonstrated the phenomenon the researchers called “antennal grabbing” where the male cuckoo bee winds his antennae around

Insertion phase of copulation in a couple of the species Nomada flavoguttata. Note the male’s antennae spirally entangling the female’s.

the female’s during copulation, thus transferring pheromones. Even though such behaviour is relatively common in Hymenoptera, this is the first known record for the genus Nomada.

While the particular biological reason for the “antennal grabbing” in different species remains unsettled, the scientists discuss the phenomenon in view of both previous hypotheses and their own observations in a new paper published in the open access Journal of Hymenoptera Research.

The courtship in Nomada cuckoo bee starts with the ‘swarming’ of males at willow shrubs and gooseberry or their patrolling in groups with males of the Andrena or Melitta species that will “foster” their offspring.

Two males of the species Nomada flavoguttata patrolling at a blossom of a common dandelion.

There is no aggression among the males. They were observed to rub their bellies and heads against the grass, in order to leave sexual pheromones, thus marking the “dating spot” for potential mates.

Earlier chemical studies of Nomada bees noted that the mandibular glands of males produce chemical compounds identical with those of their Andrena or Melitta hosts, leading to the suggestion that the males transfer pheromones that help the females mimic the odor of the host bee, and later enter its nest unnoticed to lay its eggs. An alternative explanation for the “antennal grabbing” is that males are spraying a substance onto the females to make them unattractive to other potential mates.

###

Original source:

Schindler M, Hofmann MM, Wittmann D, Renner SS (2018) Courtship behaviour in the genus Nomada – antennal grabbing and possible transfer of male secretions. Journal of Hymenoptera Research 65: 47-59. https://doi.org/10.3897/jhr.65.24947

First-ever fern checklist for Togo to help decision makers in the face of threats to biodiversity

Maidenhair fern (Adiantum schweinfurthii) occurring in dense forests.

Ferns and their allied species, which together comprise the pteridophytes, are vascular non-flowering plants that reproduce via spores. Many of their species are admired for their aesthetics.

However, despite being excellent bioindicators that allow for scientists and decision-makers to monitor the state of ecosystems in the face of climate change and global biodiversity crisis, these species are too often overlooked due to their relatively small size and lack of vivid colours.

Spike moss (Selaginella versicolor) with a preference for very humid and shaded forests.

To bridge the existing gaps in the knowledge about the diversity of ferns and their allied species, while also seeking to identify the ways these plants select their habitats and react to the changes occurring there later on, a research team from Togo and France launched an ambitious biodiversity project in 2013. As for the setting of their long-term study, they chose Togo – an amazingly species-rich country in Western Africa, whose flora expectedly turned out to be hugely understudied.

Having concluded their fern project in 2017, scientists Komla Elikplim Abotsi and Kouami Kokou from the Laboratory of Forestry Research, University of Lomé, Togo, who teamed up with Jean-Yves Dubuisson and Germinal Rouhan, both affiliated with the Institute of Systematics Evolution and Biodiversity (UMR 7205), France, have their first findings published in a taxonomic paper in the open access Biodiversity Data Journal.

In this first-of-a-kind checklist of Togolese ferns, the researchers record as many as 73 species previously not known to inhabit the country, including 12 species introduced for horticultural purposes. As a result of their 4-year study, the pteridophyte diversity of Togo – a country barely taking up 56,600 km² – now counts a total of 134 species.

Still, the authors believe that there are even more species waiting to be discovered on both national and global level.

“Additional investigations in the difficult to access areas of the far north of the country, and Togo Mountains are still needed to fill possible biodiversity data gaps and enable decision-makers to make the right decisions,” say the researchers.

The triangular staghorn species Platycerium stemaria living on a coffee tree branch.

In addition to their taxonomic paper, the authors are also set to publish an illustrated guide to the pteridophytes of Togo, in order to familiarise amateur botanists with this fascinating biodiversity.

 

Original source:
Abotsi KE, Kokou K, Dubuisson J-Y, Rouhan G (2018) A first checklist of the Pteridophytes of Togo (West Africa). Biodiversity Data Journal 6: e24137. https://doi.org/10.3897/BDJ.6.e24137

Museum collection reveals distribution of Carolina parakeet 100 years after its extinction

While 2018 marks the centenary of the death of the last captive Carolina parakeet – North America’s only native parrot, a team of researchers have shed new light on the previously known geographical range of the species, which was officially declared extinct in 1920.

Combining observations and specimen data, the new Carolina parakeet occurrence dataset, recently published in the open access Biodiversity Data Journal by Dr Kevin Burgio, , Dr Colin Carlson, University of Maryland and Georgetown University, and Dr Alexander Bond, Natural History Museum of London, is the most comprehensive ever produced.

The new study provides unprecedented information on the birds range providing a window into the past ecology of a lost species.

“Making these data freely available to other researchers will hopefully help unlock the mysteries surrounding the extinction and ecology of this iconic species. Parrots are the most at-risk group of birds and anything we can learn about past extinctions may be useful going forward,” says the study’s lead author, Kevin Burgio.

The observational recordings included in the study have been gleaned from a wide variety of sources, including the correspondence of well-known historical figures such as Thomas Jefferson and the explorers Lewis and Clark.

The study team referenced recorded sightings spanning nearly 400 years. The oldest recorded sighting dates back to 1564, and was found in a description of the current state of Florida written by Rene Laudonniere in 1602.

Alongside the written accounts, the researchers included location data from museum specimens. These include 25 bird skins from the Natural History Museum’s Tring site, whose skin collection is the second largest of its kind in the world, with almost 750,000 specimens representing about 95 per cent of the world’s bird species. Thereby, the study proves what invaluable resources museum collections can be.

“The unique combination of historical research and museum specimens is the only way we can learn about the range of this now-extinct species. Museums are archives of the natural world and research collections like that of the Natural History Museum are incredibly important in helping to increase our understanding of biodiversity conservation and extinction,” says Alex Bond.

“By digitising museum collections, we can unlock the potential of millions of specimens, helping us to answer some of today’s big questions in biodiversity science and conservation.”

It is hoped that this research will be the beginning of a wider reaching work that will explore further into the ecology of this long lost species.

###

Original source:

Burgio KR, Carlson CJ, Bond AL (2018) Georeferenced sighting and specimen occurrence data of the extinct Carolina Parakeet (Conuropsis carolinensis) from 1564 – 1944. Biodiversity Data Journal 6: e25280. https://doi.org/10.3897/BDJ.6.e25280

Five new blanket-hermit crab species described 130 years later from the Pacific

A blanket-hermit crab grasping an anemone.
A blanket-hermit crab grasping an anemone.

Since 1888, a lone crab species living in an extraordinary symbiosis has been considered to be one of its kind

At the turn of the twentieth century, two independent marine scientists – JR Henderson in 1888, and A Alcock in 1899, described two unusual blanket-hermit crabs from the Indo-West Pacific.

Unlike other hermit crabs, these extraordinary crustaceans do not search for empty shells to settle in for protection. Instead, they have developed a symbiotic relationship with sea anemones to cover their soft bellies. To do this, the crabs use highly specialized chelipeds to pull back and forth the anemone’s tissue to cover their soft bodies and heads whenever necessary – much like hiding under a blanket.

Among the numerous specimens collected during the famous HMS Challenger Expedition in 1874, there were two hermit crab specimens obtained from the Philippines. They amazed Henderson with their unusual physical characters, including an abdomen bent on itself rather than spirally curved, and the lack of any trace of either a shell or other kind of protective structure for their body.

As a result, in 1888, JR Henderson established a brand new genus and new species for it as Paguropsis typicus. The ending of the species name was subsequently grammatically corrected to Paguropsis typica.

image 1

A decade later, unaware of the previous discovery, A Alcock stumbled upon hundreds of hermit crab specimens off southern India, which exhibited quite spectacular behaviour. Having observed their symbiotic relations with sea anemones, the researcher also formally described in 1899 a new species and a new genus for his specimens.

However, shortly thereafter and upon learning of JR Henderson’s earlier work, A Alcock concluded that his hermit crab specimens and those of JR Henderson must be one and the same species, so the two scientific names were officially synonymized in 1901 in a publication with his colleague AF McArdle, with JR Henderson’s name taking precedence as required by the principle of priority set forth in the International Code of Zoological Nomenclature.

Now, 130 years later, an international team of scientists, led by invertebrate zoologist Dr Rafael Lemaitre of the National Museum of Natural HistorySmithsonian Institution, USA, not only found that A Alcock’s Indian specimens were indeed a separate species, leading to the resurrection of its name as Paguropsis andersoni, but that blanket-hermit crabs are not as rare as previously thought.

In their recent publication in the open access journal ZooKeys, the biologists described a total of five new species and a new genus of closely related blanket-hermit crabs. Furthermore, they expect that other species are to be discovered, since there are many vast marine shelf areas and deep-sea habitats spread across the Indo-West Pacific yet to be sampled.

To develop their exceptional symbiosis with sea anemones, the blanket-hermit crabs have obviously needed just as extraordinary evolutionary adaptations. Perhaps the most remarkable of these are their specialized chelate fourth legs that allow for the crustaceans to effectively grab and stretch the thin-walled body of the anemones to cover themselves. For five of the species, the scientists report and unusual grasping shape for this cheliped that is reminiscent of bear claws, while in the other two the shape resembles ice-block tongs.

Unfortunately, the identity of the sea anemone species involved in the symbiotic relationship with any of the studied blanket-hermit crabs is currently uncertain, and their biology remains unknown.

A blanket-hermit crab 'wearing' an anemone.
A blanket-hermit crab ‘wearing’ an anemone.

So far, the genus described by JR Henderson as Paguropsis, contains five species distributed in the subtropical and tropical Indo-West Pacific, and living at depths ranging from 30 to 1125 m. These include the two species discovered in the 19th century, and three new species, one of which, Paguropsis gigas, is the largest known blanket-hermit crab that reaches a body size of 15 cm when fully stretched (a large size by hermit crab standards).

For two of the newly discovered hermit crabs, the new genus Paguropsina is erected to reflect the numerous similarities between the two species and their Paguropsis relatives. The Latin suffix -ina refers to the comparatively smaller size of the two species. Both blanket-hermit species of Paguropsina are found in the subtropical and tropical western Pacific at depth between 52 and 849 m.

“Here there is no shell to play the part of ‘Sir Pandarus of Troy,’ but the sea-anemone settles upon the hinder part of the young hermit-crab’s tail, and the two animals grow up together, in such a way that the spreading zoophytes form a blanket which the hermit can either draw completely forwards over its head or throw half-back, as it pleases,” Alcock once eloquently described his marine discovery.

###

Original source:

Lemaitre R, Rahayu DL, Komai T (2018) A revision of “blanket-hermit crabs” of the genus Paguropsis Henderson, 1888, with the description of a new genus and five new species (Crustacea, Anomura, Diogenidae). ZooKeys 752: 17-97. https://doi.org/10.3897/zookeys.752.23712

A new hope: One of North America’s rarest bees has its known range greatly expanded

The Macropis Cuckoo Bee is one of the rarest bees in North America, partly because of its specialized ecological associations. It is a nest parasite of oil-collecting bees of the genus Macropis which, in turn, are dependent on oil-producing flowers of the genus Lysimachia.

In fact, the cuckoo bee – which much like its feather-bearing counterpart does not build a nest of its own, but lays its eggs in those of other species instead – is so rare that it was thought to have gone extinct until it was collected in Nova Scotia, Canada, in the early 2000s. As a result, the Macropis Cuckoo Bee was brought to the attention of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).

Recently, an individual reported from Alberta, Canada, brought new hope for the survival of the species. In addition to previously collected specimens from Ontario, this record greatly expands the known range of the cuckoo.

Scientists Dr Cory S Sheffield, Royal Saskatchewan Museum, Canada, who was the one to rediscover the “extinct” species in Nova Scotia, and Jennifer Heron, British Columbia Ministry of Environment & Climate Change Strategy, present their new data, and discuss the conservation status of this species in their paper, published in the open access journal Biodiversity Data Journal.

“This species has a very interesting biology,” they say, “being a nest parasite – or cuckoo – of another group of bees that in turn have very specialized dietary needs.”

Image 2 Macropis on flower

The hosts, bees of the genus Macropis (which themselves are quite rare) are entirely dependent on plants of the primrose genus Lysimachia. Moreover, they only go after those Lysimachia species whose flowers produce oil droplets, which the insects collect and feed to their larvae. Thus, Macropis bees require these oil-producing flowers to exist just like Macropis cuckoo bees need their hosts and their nests. Curiously, this reliance, as suggested by previous studies on related European species, has made the female cuckoos develop the ability to find their host’s nests by the smell of the floral oils.

“This level of co-dependence between flower, bee, and cuckoo bee, makes for a very tenuous existence, especially for the cuckoo,” the authors comment. “The recent specimen from Alberta lets us know that the species is still out there, and is more widespread than we thought.”

In conclusion, the authors suggest that continuing to monitor for populations of rare bees, and documenting historic records, are crucial for conservation status assessments of at-risk species.

Biodiversity Data Journal provides a great venue to share this type of information with our colleagues for regional, national, and international efforts for species conservation,” they note.

###

Original source:

Sheffield C, Heron J (2018) A new western Canadian record of Epeoloides pilosulus (Cresson), with discussion of ecological associations, distribution and conservation status in Canada. Biodiversity Data Journal 6: e22837. https://doi.org/10.3897/BDJ.6.e22837

The Alps are home to more than 3,000 lichens

Historically, the Alps have always played an emblematic role, being one of the largest continuous natural areas in Europe. With its numerous habitats, the mountain system is easily one of the richest biodiversity hotspots in Europe.

Lichens are curious organisms comprising a stable symbiosis between a fungus and one or more photosynthetic organisms, for example green algae and/or cyanobacteria. Once the symbiosis is established, the new composite organism starts to function as a whole new one, which can now convert sunlight into essential nutrients and resist ultraviolet light at the same time.

A common fruticose lichen in the Alps (Flavocetraria nivalis). Photo: Dr Peter O. Bilovitz
A common fruticose lichen in the Alps (Flavocetraria nivalis).
Photo: Dr Peter O. Bilovitz

Being able to grow on a wide range of surfaces – from tree bark to soil and rock, lichens are extremely useful as biomonitors of air quality, forest health and climate change.

Nevertheless, while the Alps are one of the best studied parts of the world in terms of their biogeography, no overview of the Alpine lichens had been provided up until recently, when an international team of lichenologists, led by Prof. Pier Luigi Nimis, University of Trieste, Italy, concluded their 15-year study with a publication in the open access journal MycoKeys.

Sunrise in the Julian Alps. Photo: Dr Pier Luigi Nimis
Sunrise in the Julian Alps.
Photo: Dr Pier Luigi Nimis

The scientists’ joint efforts produced the first ever checklist to provide a complete critical catalogue of all lichens hitherto reported from the Alps. It comprises a total of 3,138 entries, based on data collected from eight countries – Austria, France, Germany, Italy, Liechtenstein, Monaco, Slovenia and Switzerland. In their research paper, the authors have also included notes on the lichens’ ecology and taxonomy.

A common lichen in the Alps (Xanthoria elegans). Photo: Dr Tomi Trilar
A common lichen in the Alps (Xanthoria elegans).
Photo: Dr Tomi Trilar

They point out that such catalogue has been missing for far too long, hampering research all over the world. The scientists point out that this has been “particularly annoying”, since the data from the Alps could have been extremely useful for comparisons between mountainous lichen populations from around the globe. It turns out that many lichens originally described from the Alps have been later identified in other parts of the world.

It was a long and painstaking work, which lasted almost 15 years, revealing a surprisingly high number of yet to be resolved taxonomic problems that will hopefully trigger further research in the coming years,” say the authors.

We think that the best criterion to judge whether a checklist has accomplished its task for the scientific community is the speed of it becoming outdated,” they conclude paradoxically.

The new checklist is expected to serve as a valuable tool for retrieving and accessing the enormous amount of information on the lichens of the Alps

A widespread alpine lichen (Thamnolia vermicularis). Photo: Dr Peter O. Bilovitz
A widespread alpine lichen (Thamnolia vermicularis).
Photo: Dr Peter O. Bilovitz

that has accumulated over centuries of research. It offers a basis for specimen revisions, critical re-appraisal of poorly-known species and further exploration of under-explored areas. Thus, it could become a catalyst for new, more intensive investigations and turn into a benchmark for comparisons between mountains systems worldwide.

###

Original source:

Nimis PL, Hafellner J, Roux C, Clerc P, Mayrhofer H, Martellos S, Bilovitz PO (2018) The lichens of the Alps – an annotated checklist. MycoKeys 31: 1-634. https://doi.org/10.3897/mycokeys.31.23568

Lichenologists at work in the Carnic Alps. Photo: Dr Pier Luigi Nimis
Lichenologists at work in the Carnic Alps.
Photo: Dr Pier Luigi Nimis

Double trouble: Invasive insect species overlooked as a result of a shared name

An invasive leaf-mining moth, feeding on cornelian cherry, has been gradually expanding its distributional range from its native Central Europe northwards for a period likely longer than 60 years. During that period, it has remained under the cover of a taxonomic confusion, while going by a name shared with another species that feeds on common dogwood.

To reproduce, this group of leaf-mining moths lay their eggs in specific plants, where the larvae make tunnels or ‘mines’, in the leaves. At the end of these burrows, they bite off an oval section, in which they can later pupate. These cutouts are also termed ‘shields’, prompting the common name of the family, the shield-bearer moths.

During a routine study into the DNA of leaf-mining moths, Erik van Nieukerken, researcher at Naturalis Biodiversity Center, Leiden, the Netherlands, discovered that the DNA barcodes of the species feeding on common dogwood and cornelian cherry were in fact so different that they could only arise from two separate species. As a result, Erik teamed up with several other scientists and amateur entomologists to initiate a more in-depth taxonomic study.

Curiously, it turned out that the two species had been first identified on their own as early as in 1899, before being described in detail by a Polish scientist in the 50s. Ironically, it was another Polish study, published in the 70s, that regarded the evidence listed in that description as insufficient and synonymised the two leaf-miners under a common name (Antispila treitschkiella).

Now, as a result of the recent study undertaken by van Nieukerken and his collaborators, the two moth species – Antispila treitschkiella and Antispila petryi – have their diagnostic features listed in a research article published in the open access journal Nota Lepidopterologica.

“We now establish that the species feeding on common dogwood, A. petryi, does not differ only in its DNA barcode, but also in characters of the larva, genitalia and life history,” explains Erik van Nieukerken. “A. petryi has a single annual generation, with larvae found from August to November, whereas A. treitschkiella, which feeds on cornelian cherry, has two generations, with larvae occurring in June-July and once again between September and November.”

While van Nieukerken and his team were working on the taxonomy of the moths, David C. Lees of the Natural History Museum, London, spotted a female leaf-miner in the Wildlife Garden of the museum. Following consultation with van Nieukerken, it turned out that the specimen in question was the first genuine A. treitschkiella ever to be found in Britain. Subsequently, the research groups decided to join forces, leading to the present discovery.

Despite the lack of data for the British Isles, it is already known that, in continental Europe, the cornelian cherry-feeding species had established in the Netherlands and much of Germany in the 1990s.

0.6 x 1.0

With common dogwood being widely planted, it is now suspected that A. petryi has recently reached Sweden and Estonia, even though there was no previous evidence of the leaf-miner expanding its range.

“This discovery should provoke the attention of gardeners and other members of the public alike to the invasive leafminers attacking some of our much admired trees and shrubs, as we have demonstrated for the cornelian cherry – a species well-known for its showy red berries in the autumn,” says David Lees.

“Especially in Britain, we hope that they check their photos for the conspicuous leaf mines, recognisable by those oval cutouts, to see if they can solve the mystery of when the invasion, which is now prominent on cornels around London, actually started, and how fast it progresses. Citizen scientists can help.”

###

Original source:

van Nieukerken EJ, Lees DC, Doorenweerd C, Koster S(JC), Bryner R, Schreurs A, Timmermans MJTN, Sattler K (2018) Two European Cornus L. feeding leafmining moths, Antispila petryi Martini, 1899, sp. rev. and A. treitschkiella (Fischer von Röslerstamm, 1843) (Lepidoptera, Heliozelidae): an unjustified synonymy and overlooked range expansion. Nota Lepidopterologica 41(1): 39-86. https://doi.org/10.3897/nl.41.22264