While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union.
Expertise tends to be particularly poor in the countries with the richest biodiversity, while taxonomists are predominantly male and ageing
While insect populations continue to decline, taxonomic expertise in Europe is at serious risk, confirms data obtained within the European Red List of Insect Taxonomists, a recent study commissioned by the European Union.
Scientists who specialise in the identification and discovery of insect species – also known as insect taxonomists – are declining across Europe, highlights the newly released report by CETAF, International Union for Conservation of Nature (IUCN) and Pensoft. The authors of this report represent different perspectives within biodiversity science, including natural history and research institutions, nature conservation, academia and scientific publishing.
Despite the global significance of its taxonomic collections, Europe has been losing taxonomic expertise at such a rate that, at the moment nearly half (41.4%) of the insect orders are not covered by a sufficient number of scientists. If only EU countries are counted, the number looks only slightly more positive (34.5%). Even the four largest insect orders: beetles (Coleoptera), moths and butterflies (Lepidoptera), flies (Diptera) and wasps, bees, ants and sawflies (Hymenoptera) are only adequately ‘covered’ in a fraction of the countries.
To obtain details about the number, location and productivity of insect taxonomists, the team extracted information from thousands of peer-reviewed research articles published in the last decade, queried the most important scientific databases and reached out to over fifty natural science institutions and their networks. Furthermore, a dedicated campaign reached out to individual researchers through multiple communication channels. As a result, more than 1,500 taxonomists responded by filling in a self-declaration survey to provide information about their personal and academic profile, qualification and activities.
Then, the collected information was assessed against numerical criteria to classify the scientists into categories similar to those used by the IUCN Red List of Threatened SpeciesTM. In the European List of Insect Taxonomists, these range from Eroded Capacity (equivalent to Extinct) to Adequate Capacity (equivalent to Least Concern). The assessment was applied to the 29 insect orders (i.e. beetles, moths and butterflies etc.) to figure out which insect groups the society, conservation practitioners and decision-makers need not be concerned at this point.
On a country level, the results showed that Czechia, Germany and Russia demonstrate the most adequate coverage of insect groups. Meanwhile, Albania, Azerbaijan, Belarus, Luxembourg, Latvia, Ireland and Malta turned out to be the ones with insufficient number of taxonomists.
In most cases, the availability of experts seems to correlate to GDP, as wealthiest countries tend to invest more in their scientific institutions.
What is particularly worrying is that the lack of taxonomic expertise is more evident in the countries with the greatest species diversity. This trend may cause even more significant problems in the knowledge and conservation of these species, further aggravating the situation. Thus, the report provides further evidence about a global pattern where the countries richest in biodiversity are also the ones poorest in financial and human resources.
Other concerning trends revealed in the new report are that the community of taxonomists is also ageing and – especially in the older groups – male-dominated (82%).
“One reason to have fewer young taxonomists could be due to limited opportunities for professional training (…), and the fact that not all professional taxonomists provide it, as a significant number of taxonomists are employed by museums and their opportunities for interaction with university students is probably not optimal. Gender bias is very likely caused by multiple factors, including fewer opportunities for women to be exposed to taxonomic research and gain an interest, unequal offer of career opportunities and hiring decisions. A fair-playing field for all genders will be crucial to address these shortcomings and close the gap.”
comments Ana Casino, CETAF’s Executive Director.
***
The European Red List of Taxonomists concludes with practical recommendations concerning strategic, science and societal priorities, addressed to specific decision-makers.
The authors give practical examples and potential solutions in support of their call to action.
For instance, in order to develop targeted and sustainable funding mechanisms to support taxonomy, they propose the launch of regular targeted Horizon Europe calls to study important insect groups for which taxonomic capacity has been identified to be at a particularly high risk of erosion.
To address specific gaps in expertise – such as the ones reported in the publication from Romania – a country known for its rich insect diversity, yet poor in taxonomic expertise – the consortium proposes the establishment of a natural history museum or entomological research institute that is well-fitted to serve as a taxonomic facility.
Amongst the scientific recommendations, the authors propose measures to ensure better recognition of taxonomic work at a multidisciplinary level. The scientific community, including disciplines that use taxonomic research, such as molecular biology, medicine and agriculture – need to embrace universal standards and rigorous conduct for the correct citation of scientific publications by insect taxonomists.
Societal engagement is another important call. “It is pivotal to widely raise awareness of the value and impact of taxonomy and the work of taxonomists. We must motivate young generations to join the scientific community” points Prof. Lyubomir Penev, Managing Director of Pensoft.
***
“Understanding taxonomy is a key to understanding the extinction risk of species. If we strategically target the gaps in expert capacity that this European Red List identifies, we can better protect biodiversity and support the well-being and livelihoods of our societies. With the climate crisis at hand, there is no time left to waste,”
added David Allen from the IUCN Red List team.
“As a dedicated supporter of the IUCN Red List, I am inspired by this call to strengthen the capacity, guided by evidence and proven scientific methods. However, Europe has much more scientific capacity than most biodiversity-rich regions of the world. So, what this report particularly highlights is the need for massively increasing investment in scientific discovery, and building taxonomic expertise, around the world,”
said Jon Paul Rodríguez, Chair of the IUCN Species Survival Commission.
***
Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag.
In an age where we more than ever need to appreciate and preserve the magnificent biodiversity inhabiting the Earth, we decided to go for a lighter and fun take on the work of taxonomists that often goes unnoticed by the public.
From the ocean depths surrounding Indonesia to the foliage of the native forests of Príncipe Island and into the soils of Borneo, we started with 16 species described as new to science in journals published by Pensoft over the years.
Out of these most amazing creatures, over the past several weeks we sought to find who’s got the greatest fandom by holding a poll on Twitter (you can follow it further down here or via #NewSpeciesShowdown).
Grand Finale – here comes the champion!
The two competitors come from two kingdoms, two opposite sides of the globe, and the “pages” of two journals, namely PhytoKeys and Evolutionary Systematics.
While we need to admit that we ourselves expected to crown an animal as the crowd-favourite, we take the opportunity to congratulate the botanists amongst our fans for the well-deserved win of Nepenthes pudica (see the species description)!
Find more about the curious one-of-a-kind pitcher plant in this blog post, where we announced its discovery following the new species description in PhytoKeys in June 2022:
Back then, N. pudica gave a good sign about its worldwide web appeal, when it broke the all-time record for online popularity in a competition with all plant species described in PhytoKeys over the journal’s 22-year history of taxonomic papers comrpising over 200 issues.
What’s perhaps even more curious, is that there is only one species EVER described in a Pensoft-published journal that has so far triggered more tweets than the pitcher plant, and that species is the animal that has ended up in second place in the New Species Showdown: a tiny amphibian living in Peru, commonly known as the the Amazon Tapir Frog (Synapturanus danta).Which brings us once again to the influence of botanists in taxonomic research.
Read more about its discovery in the blog post from February 2022:
Another thing that struck us during the tournament was that there was only one species described in our flagship journal in systematic journal ZooKeys: the supergiant isopod Bathynomus raksasa, that managed to fight its way to the semi-finals, where it lost against S. danta.
This makes us especially proud with our diverse and competitive journal portfolio full of titles dedicated to biodiversity and taxonomic research!
The rules
Twice a week, @Pensoft would announce a match between two competing species on Twitter using the hashtag #NewSpeciesShowdown, where everyone could vote in the poll for their favourie.
Disclaimer
This competition is for entertainment purposes only. As it was tremendously tough to narrow the list down to only sixteen species, we admit that we left out a lot of spectacular creatures.
To ensure fairness and transparency, we made the selection based on the yearly Altmetric data, which covers articles in our journals published from 2010 onwards and ranks the publications according to their online mentions from across the Web, including news media, blogs and social networks.
We did our best to diversify the list as much as possible in terms of taxonomic groups. However, due to the visual-centric nature of social media, we gave preference to immediately attractive species.
All battles:
(in chronological order)
Round 1
Round 2 – Quarter-finals
Round 3 – Semi-finals
THE FINAL
But why did we hold the tournament right now?
If you have gone to the Pensoft website at any point in 2022, visited our booth at a conference, or received a newsletter from any of our journals, by this time, you must be well aware that in 2022 – more precisely, on 25 December – we turned 30. And we weren’t afraid to show it!
Indeed, 30 is not that big of a number, as many of us adult humans can confirm. Yet, we take pride in reminiscing about what we’ve done over the last three decades.
Long story short, we wanted to do something special and fun to wrap up our anniversary year. While we have been active in various areas, including development of publishing technology concerning open and FAIR access and linkage for research outcomes and underlying data; and multiple EU-supported scientific projects, we have always been associated with our biodiversity journal portfolio.
Besides, who doesn’t like to learn about the latest curious creature that has evaded scientific discovery throughout human history up until our days? 😉
For the 37th time, experts from across the world to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.
Between 17th and 21st October, about 400 scientists and experts took part in a hybrid meeting dedicated to the development, use and maintenance of biodiversity data, technologies, and standards across the world.
For the 37th time, the global scientific and educational association Biodiversity Information Standards (TDWG) brought together experts from all over the globe to share and discuss the latest developments surrounding biodiversity data and how they are being gathered, used, shared and integrated across time, space and disciplines.
This was the first time the event happened in a hybrid format. It was attended by 160 people on-site, while another 235 people joined online.
“It’s wonderful to be in the Balkans and Bulgaria for our Biodiversity Information and Standards (TDWG) 2022 conference! Everyone’s been so welcoming and thoughtfully engaged in conversations about biodiversity information and how we can all collaborate, contribute and benefit,”
“Our TDWG mission is to create, maintain and promote the use of open, community-driven standards to enable sharing and use of biodiversity data for all,”
she added.
“We are proud to have been selected to be the hosts of this year’s TDWG annual conference and are definitely happy to have joined and observed so many active experts network and share their know-how and future plans with each other, so that they can collaborate and make further progress in the way scientists and informaticians work with biodiversity information,”
said Pensoft’s founder and CEO Prof. Lyubomir Penev.
“As a publisher of multiple globally renowned scientific journals and books in the field of biodiversity and ecology, at Pensoft we assume it to be our responsibility to be amongst the first to implement those standards and good practices, and serve as an example in the scholarly publishing world. Let me remind you that it is the scientific publications that present the most reliable knowledge the world and science has, due to the scrutiny and rigour in the review process they undergo before seeing the light of day,”
he added.
***
In a nutshell, the main task and dedication of the TDWG association is to develop and maintain standards and data-sharing protocols that support the infrastructures (e.g., The Global Biodiversity Information Facility – GBIF), which aggregate and facilitate use of these data, in order to inform and expand humanity’s knowledge about life on Earth.
It is the goal of everyone volunteering their time and expertise to TDWG to enable the scientists interested in the world’s biodiversity to do their work efficiently and in a manner that can be understood, shared and reused by others. After all, biodiversity data underlie everything we know about the natural world.
If there are optimised and universal standards in the way researchers store and disseminate biodiversity data, all those biodiversity scientists will be able to find, access and use the knowledge in their own work much more easily. As a result, they will be much better positioned to contribute new knowledge that will later be used in nature and ecosystem conservation by key decision-makers.
On Monday, the event opened with welcoming speeches by Deborah Paul and Prof. Lyubomir Penev in their roles of the Chair of TDWG and the main host of this year’s conference, respectively.
The opening ceremony continued with a keynote speech by Prof. Pavel Stoev, Director of the Natural History Museum of Sofia and co-host of TDWG 2022.
He walked the participants through the fascinating biodiversity of Bulgaria, but also the worrying trends in the country associated with declining taxonomic expertise.
He finished his talk with a beam of hope by sharing about the recently established national unit of DiSSCo, whose aim – even if a tad too optimistic – is to digitise one million natural history items in four years, of which 250,000 with photographs. So far, one year into the project, the Bulgarian team has managed to digitise more than 32,000 specimens and provide images to 10,000 specimens.
The plenary session concluded with a keynote presentation by renowned ichthyologist and biodiversity data manager Dr. Richard L. Pyle, who is also a manager of ZooBank – the key international database for newly described species.
In his talk, he highlighted the gaps in the ways taxonomy is being used, thereby impeding biodiversity research and cutting off a lot of opportunities for timely scientific progress.
“But we do not have easy access to much of this information because the different databases are not well integrated. Taxonomy offers us the best opportunity to connect this information together, to answer important questions about biodiversity that we have never been able to answer before. The reason meetings like this are so important is that they bring people together to discuss ways of using modern informatics to greatly increase the power of the data we already have, and prioritise how we fill the gaps in data that exist. Taxonomy, and especially taxonomic data integration, is a very important part of the solution.”
Pyle also commented on the work in progress at ZooBank ten years into the platform’s existence and its role in the next (fifth) edition of the International Code of Zoological Nomenclature, which is currently being developed by the International Commission of Zoological Nomenclature (ICZN).
“We already know that ZooBank will play a more important role in the next edition of the Code than it has for these past ten years, so this is exactly the right time to be planning new services for ZooBank. Improvements at ZooBank will include things like better user-interfaces on the web to make it easier and faster to use ZooBank, better data services to make it easier for publishers to add content to ZooBank as part of their publication workflow, additional information about nomenclature and taxonomy that will both support the next edition of the Code, and also help taxonomists get their jobs done more efficiently and effectively. Conferences like the TDWG one are critical for helping to define what the next version of ZooBank will look like, and what it will do.”
***
During the week, the conference participants had the opportunity to enjoy a total of 140 presentations; as well as multiple social activities, including a field trip to Rila Monastery and a traditional Bulgarian dinner.
While going about the conference venue and field trip localities, the attendees were also actively uploading their species observations made during their stay in Bulgaria on iNaturalist in a TDWG2022-dedicated BioBlitz. The challenge concluded with a total of 635 observations and 228 successfully identified species.
“Biodiversity provides the support systems for all life on Earth. Yet the natural world is in peril, and we face biodiversity and climate emergencies. The consequences of these include accelerating extinction, increased risk from zoonotic disease, degradation of natural capital, loss of sustainable livelihoods in many of the poorest yet most biodiverse countries of the world, challenges with food security, water scarcity and natural disasters, and the associated challenges of mass migration and social conflicts.
Solutions to these problems can be found in the data associated with natural science collections. DiSSCo is a partnership of the institutions that digitise their collections to harness their potential. By bringing them together in a distributed, interoperable research infrastructure, we are making them physically and digitally open, accessible, and usable for all forms of research and innovation.
At present rates, digitising all of the UK collection – which holds more than 130 million specimens collected from across the globe and is being taken care of by over 90 institutions – is likely to take many decades, but new technologies like machine learning and computer vision are dramatically reducing the time it will take, and we are presently exploring how robotics can be applied to accelerate our work.”
In his turn, Dr Donat Agosti, CEO and Managing director at Plazi – a not-for-profit organisation supporting and promoting the development of persistent and openly accessible digital taxonomic literature – said:
***
At the closing plenary session, Gail Kampmeier – TDWG Executive member and one of the first zoologists to join TDWG in 1996 – joined via Zoom to walk the conference attendees through the 37-year history of the association, originally named the Taxonomic Databases Working Group, but later transformed to Biodiversity Information Standards, as it expanded its activities to the whole range of biodiversity data.
Then, in the final talk of the session, Deborah Paul took to the stage to present the progress and key achievements by the association from 2022.
Launched in 2017 on the Pensoft’s publishing platform ARPHA, the journal provides the quite unique and innovative opportunity to have both abstracts and full-length research papers published in a modern, technologically-advanced scholarly journal. In her speech, Deborah Paul reminded that BISS journal welcomes research articles that demonstrate the development or application of new methods and approaches in biodiversity informatics in the form of case studies.
Amongst the achievements of TDWG and its community, a special place was reserved for the Horizon 2020-funded BiCIKL project (abbreviation for Biodiversity Community Integrated Knowledge Library), involving many of the association’s members.
Having started in 2021, the 3-year project, coordinated by Pensoft, brings together 14 partnering institutions from 10 countries, and 15 biodiversity under the common goal to create a centralised place to connect all key biodiversity data by interlinking a total of 15 research infrastructures and their databases.
In fact, following the week-long TDWG 2022 conference in Sofia, a good many of the participants set off straight for another Bulgarian city and another event hosted by Pensoft. The Second General Assembly of BiCIKL took place between 22nd and 24th October in Plovdiv.
***
You can also explore highlights and live tweets from TDWG 2022 on Twitter via #TDWG2022.
Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.
To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.
“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”
– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.
Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.
Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.
Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.
Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.
“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”
the researchers write in their paper.
Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.
Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.
So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.
This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.
It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.”
The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.
***
Research article:
So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518
“Working in science in a country under these conditions, and getting to publish the results of the investigations in high-level scientific journals such as ZooKeys, is an act of “true heroism”.
Oscar Miguel Lasso-Alcalá, MSc. is a Spanish-Venezuelan ichthyologist. This summer, his team described a new species of Oscar fish in the journal ZooKeys.
In this second part of his interview, he tells us about the challenges in his work and shares the story behind the new cichlid’s name.You can find Part 1 of the interview.
What did you find to be the biggest challenge?
Throughout the past seven years, the description of this species has been a real challenge. Our group of researchers knew from the beginning that it was going to be a difficult job. However, we never imagined the magnitude of the problems or challenges we would encounter.
We had to study the specimens from the Orinoco River basin in Venezuela and Colombia, and rivers from the hydrographic basin of the Gulf of Paria in Venezuela, which were within our reach, in the main scientific collections of fishes in Venezuela. Similarly, we studied the specimens from the Amazon River basin in one of the main collections in Brazil. We studied the traditional external morphology (morphometric characters, or the body, and meristic measurements, or the number of structures or parts such as scales, fins, etc.) and their coloration, as well as their internal morphology, that is, the study of structures of their skeleton, with the use of high-definition radiographs, where we found the main differences with other species.
A novel technique was the study of the shape of the otoliths, or “ear stones”, a technique not used before in the study of this group of fish. That is why I mentioned before that we also made some great scientific discoveries.
In addition to the long and meticulous laboratory work, we also had to conduct field work, not only to capture new specimens for the morphological study, but also for the genetic and molecular study, a new methodology that has become popular in recent years as a way to support taxonomy and systematics in the description and classification of species.
For this latest work, we also relied on a recent study in this area of research, carried out by the genetics specialists on our work team. This means our research was based on what is currently called “integrative taxonomy”, which is the sum of different techniques, methods, and technologies, at the service of achieving our goal: the description of a new species for science and for the world.
Many other difficulties came up along the way, which is why this research took over seven years to be published. Normally, researchers cannot focus 100% of their time on one single research, and workloads fluctuate. Sometimes we think that a greater number of specialists would help distribute the workload evenly or that getting input from others with different fields of experience, sometimes specialized, would help enrich the work, but that also makes it more difficult to reach agreement. Reaching perfection is never possible, and it took a long time for us to reach a level of results that was both acceptable to all and well accepted in the field of taxonomy and systematics.
One of the biggest challenges was purely financial. While we had some funds from Brazilian research support organizations and two universities, this was not the case in Venezuela, a country plunged in a serious political, social, economic, and humanitarian crisis.
Working in science in a country under these conditions, and being able to publish your results in high-level scientific journals, including ZooKeys, is an act of “true heroism”, as my brother José Antonio often says when cheering on my publication.
How come you named it after Ivan Mikolji?
People who do not know about the great work carried out by river explorer Ivan Mikolji might wonder about that, but the thousands of people, connoisseurs and followers of his work are absolutely clear on the justification for this appointment.
In addition to being an excellent professional explorer, author, underwater photographer, audiovisual producer and even plastic artist, he is a tireless and enthusiastic disseminator of the biodiversity and natural history of freshwater fish in Venezuela and Colombia.
He has made dozens of photography and art exhibitions in Venezuela, Mexico and the United States, as well as award-winning documentaries on the Orinoco River and its biodiversity that have acquired millions of views.
Mikolji has also inspired thousands of “conservationist” aquarists, as a judge in a worldwide movement called “Biotope Aquariums,” where people try to simulate, as much as possible, the ecosystems and aquatic biodiversity of their places of origin, for the conservation of their local biodiversity.
In addition, his educational work further includes the “Wild Aquarium”, a new movement and methodology, where he recreates in the same place (in situ), a “Biotope aquarium”, helping local communities (children and adults) learn about local aquatic ecosystems and biodiversity and their conservation.
In addition to his great artistic, informative, and educational work, with the enormous data accumulated in more than 15 years of work and field observations, in the recent years, he has participated in different research projects, publishing books and numerous scientific articles, some of them with us. For this reason, in 2020, he was appointed Associate Researcher of the Museo de Historia Natural La Salle (Caracas) of the Fundación La Salle de Ciencias Naturales, in Venezuela. By the way, we are planning research that we hope to announce soon in various publications.
Regarding Astronotus mikoljii, our good friend and now colleague Ivan Mikolji, was the one who initially proposed that we describe this species that he loves so much. He selflessly supported all the authors throughout the study in diverse ways, even in the field work in Venezuela. Ivan helped us in the search for equipment and materials, in the search for information, in the photographic work, and now in the dissemination of this study. For this reason, the article, in just one week, achieved more than 4,500 downloads, both on ZooKeys and ResearchGate web platforms, a true record for a study of this type.
Most importantly, throughout these years, Ivan has always encouraged us not to lose our course and objective, even in the most difficult moments. After years of knowing him, we have cultivated an excellent friendship. This is why we decided that it was just and necessary to recognize his work, help, companionship, and friendship, naming this beautiful and beloved species in his honor.
You might think that Europe is so well studied that no large animals remain undiscovered. Yet today, a new species of giant keelback slug from Montenegro was announced in the open-access Biodiversity Data Journal. The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.
The international team of citizen scientists from Italy, the Netherlands, Serbia, South Africa, and the United States found the slug in July 2019 while exploring the spectacular Tara Canyon, Europe’s deepest gorge, on inflatable rafts. The brownish-grey animals, with a sharp ridge along the back, and 20 cm in length when fully stretched, were hiding under rocky overhangs in the narrowest part of the ravine.
At first, the newly discovered slugs seemed superficially indistinguishable from the ash-black keelback slug (Limax cinereoniger), which also lives in the Tara Canyon. The team had to use a portable DNA lab to work out that there is a 10% difference between the two slugs in the so-called DNA barcode. Moreover, when they dissected a few of them, they found differences in the reproductive organs as well. This was enough to decide that a new species had been discovered, and they named it Limax pseudocinereoniger to indicate its similarity to L. cinereoniger.
The field trip was run by Taxon Expeditions, which organises real scientific expeditions for the general public, with the aim to make scientific discoveries. Rick de Vries, a web editor and illustrator from Amsterdam who found the first specimen of L. pseudocinereoniger, says: “It’s an incredible thrill to hold an animal in your hands and to know that it is still unknown to science”.
Citizen scientists studying specimens in the team’s field lab in Montenegro.
Zoologist Iva Njunjić, one of the authors of the paper, thinks that more unknown species are likely to be found in Tara Canyon and the Durmitor National Park, of which it is part. “Using a combination of DNA analysis and anatomy will probably reveal more species that are identical on the outside but actually belong to different species,” she says.
Citizen scientists rafting on the Tara river, on their way to the locality where the new slug was discovered. Photo by Jan Schilthuizen
In 2023, Taxon Expeditions plans to take a new team of citizen scientists to Montenegro with a mission to discover new species and document the hidden biodiversity.
Taxon Expeditions was founded by Iva Njunjić and Menno Schilthuizen of Naturalis Biodiversity Center and specialises in ‘taxonomy tourism’ trips in Brunei, Italy, Montenegro, Panama, and the Netherlands.
Original source:
Schilthuizen M, Thompson CG, de Vries R, van Peursen ADP, Paterno M, Maestri S, Marcolongo L, Esposti CD, Delledonne M, Njunjić I (2022) A new giant keelback slug of the genus Limax from the Balkans, described by citizen scientists. Biodiversity Data Journal 10: e69685. https://doi.org/10.3897/BDJ.10.e69685
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.
Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.
The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
“It has always been foreign scientists who have described species found in the Maldives, even those that are endemic, without much involvement from local scientists. This time, it is different and getting to be part of something for the first time has been really exciting, especially having the opportunity to work alongside top ichthyologists on such an elegant and beautiful species,”
says study co-author and Maldives Marine Research Institute biologist Ahmed Najeeb.
First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives.
In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species.
Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.
“What we previously thought was one widespread species of fish, is actually two different species, each with a potentially much more restricted distribution. This exemplifies why describing new species, and taxonomy in general, is important for conservation and biodiversity management,”
says lead author and University of Sydney doctoral student Yi-Kai Tea.
Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade.
“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”
says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.
Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described.
This new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa) became the first Maldivian fish to ever be described by a local researcher. Photo by Yi-Kai Tea.
For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs.
“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”
says Rocha says
“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”
adds Najeeb.
***
Research article:
Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139
An image on Instagram prompted the discovery of a new species of Kukri snake from Himachal Pradesh, India. Intrigued by a post shared by a master student, the research team found and examined more specimens to discover they belonged to a yet undescribed species. Their study, published in the open-access journal Evolutionary Systematics, highlights how little we still know about the biodiversity in the Western Himalayas.
Intrigued by a photo shared on Instagram, a research team from India discovered a previously unknown species of kukri snake.
Staying at home in Chamba because of the COVID-19 lockdown, Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar, started exploring his backyard, photographing everything he found there and posting the pictures online. His Instagram account started buzzing with the life of the snakes, lizards, frogs, and insects he encountered.
The snake, which Virendar encountered along a mud road on a summer evening, belongs to a group commonly known as Kukri snakes, named so because of their curved teeth that resemble the Nepali dagger “Kukri”.
At first sight, the individual that Virendar photographed looked a lot like the Common Kukri snake (Oligodon arnensis). However, a herpetologist could spot some unique features that raised questions about its identity.
Kukri snake
Virendar uploaded the photo on 5 June 2020, and by the end of the month, after extensively surveying the area, he found two individuals – enough to proceed with their identification. However, the COVID-19 pandemic slowed down the research work as labs and natural history museums remained closed.
Upon the reopening of labs, the team studied the DNA of the specimens and found out they belonged to a species different from the Common Kukri snake. Then, they compared the snakes’ morphological features with data from literature and museums and used micro computed tomography scans to further investigate their morphology. In the end, the research team were able to confirm the snakes belonged to a species previously unknown to science.
The discovery was published in a research paper in the international peer-reviewed journal Evolutionary Systematics. There, the new species is described as Oligodon churahensis, its name a reference to the Churah Valley in Himachal Pradesh, where it was discovered.
What’s even more interesting is that the exploration of your own backyard may yield still undocumented species… if one looks in their own backyard, they may end up finding a new species right there.
Zeeshan A. Mirza
“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” comments Zeeshan A. Mirza.
Zeeshan Mirza
Harshil Patel
“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”
“Compared to other biodiversity hotspots, the Western Himalayas are still poorly explored, especially in terms of herpetological diversity, but they harbor unique reptile species that we have only started to unravel in the last couple of years,” Mirza adds.
Research article:
Mirza ZA, Bhardwaj VK, Patel H (2021) A new species of snake of the genus Oligodon Boie in Fitzinger, 1826 (Reptilia, Serpentes) from the Western Himalayas. Evolutionary Systematics 5(2): 335-345. https://doi.org/10.3897/evolsyst.5.72564
A new species of parasitoid wasp that constructs remarkable star-shaped cocoon masses is reported from the biodiversity hot spot Ryukyu Islands. Japanese researchers observed how the wasps construct “stars” after making their way out of the moth larvae they inhabit during their own larval stage. In their study, published in the open-access journal Journal of Hymenoptera Research, the team discuss the ecological significance of the cocoon mass and the evolution of this peculiar structure.
The new parasitoid wasps, Meteorus stellatus. Photo by Fujie S
Parasitoid wasps parasitize a variety of organisms, mostly insects. They lay eggs in the host, a larva of hawk moth in this case, where the wasp larvae later hatch. After eating the host from the inside out, the larvae spin threads to form cocoons, in which they pupate, and from which the adult wasps eventually emerge.
The larvae of Meteorus stellatus emerging from a host moth. Photo by Tone K
Larvae of the newly discovered parasitoid wasp form star-shaped masses of cocoons lined up in a spherical pattern, suspended by a thread that can reach up to 1 meter in length. The structure, 7 to 14 mm wide and 9 to 23 mm long, can accommodate over 100 cocoons.
The star-shaped cocoon mass and the cable of the new parasitoid wasps. Photo by Shimizu S
Despite its peculiarity, the wasp species constructing these masses had not been previously described: morphological observation and molecular analysis revealed that it was new to science. The authors aptly called it Meteorus stellatus, adding the Latin word for “starry” to its scientific name.
Thanks to the recent publication, we now have the first detailed report about the construction of such a remarkable cocoon mass in parasitoid wasps. We can also see what the process looks like, as the researchers were able to film the wasps escaping from the moth larvae and forming the star-shaped structure.
Why does M. stellatus form cocoons in such a unique structure?
The authors of the study believe this unique structure helps the wasps survive through the most critical time, i.e. the period of constructing cocoons and pupating, when they are exposed to various natural enemies and environmental stresses. The star shape most likely reduces the exposed area of individual cocoons, thus increasing their defense against hyper-parasitoids (wasps attacking cocoons of other parasitoid wasps), while the long thread that suspends the cocoon mass protects the cocoons from potential enemies like ants.
“How parasitoid wasps have evolved to form such unique masses instead of the common individual cocoons should be the next thing on our ‘to-research’ list,” say the authors.
Research article:
Fujie S, Shimizu S, Tone K, Matsuo K, Maeto K (2021) Stars in subtropical Japan: a new gregarious Meteorus species (Hymenoptera, Braconidae, Euphorinae) constructs enigmatic star-shaped pendulous communal cocoons. Journal of Hymenoptera Research 86: 19-45. https://doi.org/10.3897/jhr.86.71225
For the first time in Slovakia, the dwarf spider Walckenaeria stylifrons and crab spider Spiracme mongolica were discovered on sand dunes in Záhorie Protected Landscape Area, on localities that serve as a military complex, used by the native Slovak army. Moreover, the spider W. stylifrons was found in a wine-growing region near the historical town of Modra.
European continental sand dunes, characterized by high ground temperature, high temperature fluctuations and movement of sand masses, belong to the rare, climatically extreme areas resembling deserts. In Europe, lowland sandy grassland habitats are considered to be among the most endangered and are often the subject of nature conservation.
The researchers decided to understand the spider assemblages living in such extreme habitats in Western Slovakia. During 2018–2019, the study sites were chosen and co-called pitfall traps hidden in the ground were used to collect spiders.
Among other collected species, two spiders were found for the first time in Slovakia. The dwarf spider W. stilifrons is recorded from 15 European countries and it is known from Eastern England to Eastern Germany in the north, and from the Iberian Peninsula to the Crimea and Cyprus in the south. Within Central Europe, the species has so far been known from Austria, Germany and Switzerland. The crab spider S. mongolica is known from Serbia to the European part of Russia. Its distribution in Asia extends from Central Asian part of Russia, Azerbaijan, Kazakhstan to Mongolia and China. In China it is known only from Western Inner Mongolia and Xinjiang region.
Crab spider, Spiracme mongolica
Upon the detailed examination of male copulatory organs, the researchers found out that one of the species shares characters typical for the genus Spiracme, in consideration of that a new combinationSpiracme mongolica for the spider previously known as Xysticus mongolicus was suggested.
In conclusion, the authors assume that W. stilifrons can live elsewhere in Europe. The rarity of the species may be related to the occurrence of adults, especially in the winter months, as most researchers are focused only on the growing seasons. The occurrence of S. mongolica in sand dunes in Slovakia confirms this species preference for dry habitats. The new finding of S. mongolica is the most known westernmost.
Research article: Purgat P, Gajdoš P, Purkart A, Hurajtová N, Volnár Ľ, Krajčovičová K (2021) Walckenaeria stilifrons and Spiracme mongolica (Araneae, Linyphiidae, Thomisidae), two new species to Slovakia. Check List 17 (6): 1601-1608. doi: 10.15560/17.6.1601