Bouldering in south-central Madagascar: a new “rock-climbing” gecko species of the genus Paroedura

Thanks to recently collected samples, it was described and named after its preferred habitat, the boulders surrounded by the last remaining forests at these sites.

Named after its habitat preference, Paroedura manongavato, from the Malagasy words “manonga” (to climb) and “vato” (rock), is a bouldering expert. Part of its “home range” is also very well-known to rock climbers for its massive granitic domes. “Its description represents another step into the crux (in climbing jargon, the most difficult section of a bouldering problem) of resolving the taxonomy of the recently revised P. bastardi group, where the new species belongs, and reaching a total of 25 described species in this genus, all exclusively living in Madagascar and Comoros,” says C. Piccoli from CIBIO – Research Center in Biodiversity and Genetic Resources, Portugal. She and her team just published a paper describing the new gecko.

Thus far, this species has only been found in Anja Reserve and Tsaranoro, both of which are isolated forest patches in the arid south-central plateau of Madagascar. These sites, at a distance of ca. 25 km, have a peculiar conformation, with huge granitic boulders close to rocky cliffs and surrounded by vegetation. The survival of P. manongavato, defined as microendemic for being restricted to a very narrow distributional range, thus depends on the preservation of these small forest patches. Subsequently, the authors proposed an evaluation of its conservation status as Critically Endangered, a category designated for species threatened of extinction by the International Union for Conservation of Nature.

Its discovery history is long, starting during the Malagasy summer of 2010, when the first evidence of another Paroedura species was found in Anja, together with the recently described P. rennerae in 2021. Distinguishing these two species on the field is a difficult task. Both species have prominent dorsal-enlarged keeled scales and a similar dorsal pattern, although adults of P. manongavato have an overall less spiky appearance, less contrasted dorsal markings, and a smaller body size compared to P. rennerae. The need to collect more samples brought researchers A. Crottini, F. Andreone, and G. M. Rosa to return to Anja in 2014, and collect the future holotype (i.e. the name-bearing and description reference individual) of this new species. Later in 2018, F. Belluardo, J. Lobón-Rovira, and M. Rasoazanany, visited Anja and Tsaranoro again and were able to collect several tissue samples and high-resolution photos of the reptiles living in the area, including the new gecko species. This cumulative data collection was fundamental to advance with its description.

Published in the open access journal ZooKeys, this study highlights the importance of conducting herpetological inventories in Madagascar to improve our understanding of species diversity and progress with species conservation assessments. “The description of this species shows the importance of collaborative efforts when documenting biodiversity, especially for those range-restricted and isolated species at greatest risk of disappearing,” points out the leading author of this study C. Piccoli.

Research article:

Piccoli C, Belluardo F, Lobón-Rovira J, Oliveira Alves I, Rasoazanany M, Andreone F, Rosa GM, Crottini A (2023) Another step through the crux: a new microendemic rock-dwelling Paroedura (Squamata, Gekkonidae) from south-central Madagascar. ZooKeys 1181: 125-154. https://doi.org/10.3897/zookeys.1181.108134

Photos by Javier Lobón-Rovira.

Follow ZooKeys on Facebook and X.

More and more emerging diseases threaten trees around the world

A new study published in NeoBiota reveals a troubling trend: the rapid emergence of new diseases, doubling approximately every 11 years, and affecting a wide range of tree species worldwide.

Diseases are among the major causes of tree mortality in both forests and urban areas. New diseases are continually being introduced, and pathogens are continually jumping to new hosts, threatening more and more tree species. When exposed to novel hosts, emerging diseases can cause mortality previously unseen in the native range.

Tar spot on maple in Frostburg, MD, USA. Photo by Andrew V. Gougherty

Although not all diseases will outright kill their hosts, some can dramatically affect host populations. In the 20th century, chestnut blight, perhaps the most well-known tree disease in North America, effectively eliminated chestnut as an overstory tree in its native range in the Appalachian Mountains. More recently, we’ve seen sudden oak death in California, ash dieback in Europe, and butternut canker in the eastern US, each having the potential to eliminate host tree populations and alter the ecosystems where they occur.

“The continued emergence and accumulation of new diseases increases the likelihood of a particularly detrimental one emerging, and harming host tree populations,” says Dr Andrew Gougherty, research landscape ecologist at the USDA Forest Service. Recently, he has been exploring where tree diseases have accumulated fastest, and which trees are most impacted by new diseases. This information could help researchers and land managers better predict where new diseases may be most likely to emerge.

Powdery mildew on maple in Vancouver, BC, CAN. Photo by Andrew V. Gougherty

The study, recently published in the open-access journal NeoBiota, analyzes over 900 new disease reports on 284 tree species in 88 countries and quantified how emerging infectious diseases have accumulated geographically and on different hosts. “The ‘big data’ approach used in this study helps to characterise the growing threat posed by emergent infectious diseases and how this threat is unequally distributed regionally and by host species,” the author writes.

Dr Gougherty found that globally, the number of emerged diseases has accumulated rapidly over the past two decades. “The accumulation is apparent both where tree species are native and where they are not native, and the number of new disease emergences globally were found to double every ~11 years,” he explains. Among the trees he assessed, pines accumulated the most new diseases, followed by oaks and eucalypts. This, he explains, is likely due to their wide native distribution in the Northern Hemisphere, and the planting of pine forests throughout the globe. Europe, in aggregate, had the greatest total accumulation of new diseases, but North America and Asia were close behind.

Powdery mildew on maple in Vancouver, BC, CAN. Photo by Andrew V. Gougherty

In addition, he found more emerging tree diseases in areas where tree species were native versus non-native, with the exception of Latin America and the Caribbean, likely because most of the trees he assessed were not native to this region.

“Unfortunately, there is little evidence of saturation in emergent tree disease accumulation. Global trends show little sign of slowing, suggesting the impact of newly emerged diseases is likely to continue to compound and threaten tree populations globally and into the future,” warns Dr Gougherty. “Climate change is likely also playing a role, both by creating more favourable conditions for pathogens and by stressing host plants.”

Research article:

Gougherty AV (2023) Emerging tree diseases are accumulating rapidly in the native and non-native ranges of Holarctic trees. NeoBiota 87: 143-160. https://doi.org/10.3897/neobiota.87.103525

Follow NeoBiota on Facebook and X.

Maximising the impact of standardised biodiversity data: Pensoft’s role in the EU project B-Cubed

In line with its commitment to providing open-access biodiversity data, Pensoft has joined forces with 12 organisations to form the B-Cubed project.

The problem at hand

Measuring the extent and dynamics of the global biodiversity crisis is a challenging task that demands rapid, reliable and repeatable biodiversity monitoring data. Such data is essential for policymakers to be able to assess policy options effectively and accurately. To achieve this, however, there is a need to enhance the integration of biodiversity data from various sources, including citizen scientists, museums, herbaria, and researchers.

B-Cubed’s response

B-Cubed (Biodiversity Building Blocks for policy) hopes to tackle this challenge by reimagining the process of biodiversity monitoring, making it more adaptable and responsive. 

B-Cubed’s approach rests on six pillars: 

  • Improved alignment between policy and biodiversity data. Working closely with existing biodiversity initiatives to identify and meet policy needs.
  • Evidence base. Leveraging data cubes to standardise access to biodiversity data using the Essential Biodiversity Variables framework. These cubes are the basis for models and indicators of biodiversity.
  • Cloud computing environment. Providing users with access to the models in real-time and on demand.
  • Automated workflows. Developing exemplary automated workflows for modelling using biodiversity data cubes and for calculating change indicators.
  • Case studies. Demonstrating the effectiveness of B-Cubed’s tools.
  • Capacity building. Ensuring that the solutions meet openness standards and training end-users to employ them.

Pensoft’s role

Harnessing its experience in the communication, dissemination and exploitation of numerous EU projects, Pensoft focuses on maximising B-Cubed’s impact and ensuring the adoption and long-term legacy of its results. This encompasses a wide array of activities, ranging all the way from building the project’s visual and online presence to translating its results into policy recommendations. Pensoft also oversees B-Cubed’s data management by developing a Data Management Plan which ensures the implementation of the FAIR data principles and maximises the access to and re-use of the project’s research outputs.

Full list of partners

Visit B-Cubed’s website at https://b-cubed.eu/. You can also follow the project on X @BCubedProject and LinkedIn /B-Cubed Project, as well as by subscribing to its newsletter here.

Study on mysterious Amazon porcupine can help its protection

After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats.

Porcupines of the genus Coendou are arboreal, herbivorous, nocturnal rodents distributed in tropical and subtropical regions of the Americas. Most of what we currently know on them is restricted to species that occur near urban areas, and we still have a lot to learn about these fascinating animals.

Recently, a new study shed light on a very unknown neotropical porcupine species. Roosmalens’ dwarf porcupine (Coendou roosmalenorum) is the smallest porcupine species we know, with blackish monocolored bristles on the tail which confers a blackish color to it, but apart from its appearance, we didn’t know much about it until recently.

A preserved specimen of Coendou roosmalenorum.

“This species was described in 2001 and our paper is the first scientific report after this date, which means nothing was discovered about Roosmalen’s porcupine in a 22-year period,” says Fernando Heberson Menezes, the lead author of a study that was just published in the open-access journal ZooKeys.

“Before our research, we had only a morphological description of the species, with a little information about its distribution and natural history, and nothing about population ecology or conservation threats.”

Using DNA sequencing and exploring data on its occurrences, Fernando and his team were able to uncover new facts about the enigmatic animal.

Thanks to their study, we now know more about its distribution in the Madeira biogeographical province in the Amazon Forest. “With this information, we raised the hypothesis this species is endemic to Madeira Province, which is important for predicting where we can find this species and the possible threats affecting its population or its distribution,” says Fernando.

Distribution of Caaporamys roosmalenorum in Brazilian Amazonia. The new record (locality 1) is the southeastern most record for the species, from Mato Grosso state, Brazil. The darker gray area represents the Madeira Province sensu Morrone et al. (2022).

At the same time, they found Roosmalens’ dwarf porcupine at new locations in the Amazon rainforest, which suggests that its distribution in southern Amazonia is wider than suspected.

Their phylogenetic analysis – the study of the species’ evolutionary history and relationships with other species – confirmed that the species is a member of the subgenus Caaporamys . This is important, the researchers say, because the classification of the genus Coendou had been “historically chaotic” until the last few years.

The information in this study opens up numerous opportunities for further researching this species. “We can think of ways to answer very basic scientific questions such as ‘how does Roosmalen’s porcupine use space?’ or ‘what does it eat?’, some more advanced questions such as ‘how did it evolve?,’ or applied questions such as ‘what are the major threats for its conservation?,’ or ‘how can we use it as a model to know more about the health of the Amazon forest?’, says Fernando in conclusion.

Original source:

Menezes FH, Semedo TBF, Saldanha J, Garbino GST, Fernandes-Ferreira H, Cordeiro-Estrela P, da Costa IR (2023) Phylogenetic relationships, distribution, and conservation of Roosmalens’ dwarf porcupine, Coendou roosmalenorum Voss & da Silva, 2001 (Rodentia, Erethizontidae). ZooKeys 1179: 139-155. https://doi.org/10.3897/zookeys.1179.108766

Follow ZooKeys on Facebook and X.

Hundreds of weeds found illegally advertised online in Australia

A research team led by Jacob Maher discovered thousands of online advertisements for weeds that are prohibited in Australia due to their harmful impact on the country’s environment and agriculture.

Hundreds of weeds have been found advertised on a public online marketplace in Australia. Cacti and pond plants were among the most frequently advertised illegal weed species. These weeds are prohibited in Australia due to their harmful impact on the country’s environment and agriculture. Despite this, a research team led by Jacob Maher discovered thousands of online advertisements for these weeds. Their study is published in the open access journal NeoBiota.

Water hyacinth, a notorious invader that was found traded online.

Trade of ornamental plants, the kind grown in homes and gardens, is the major way weeds are introduced to new places. Some ornamental plants can make their way into the environment and become invasive, negatively impacting native species and agriculture. Increasingly, plants are traded on the internet, allowing a wide variety of plants to be introduced to more distant places. A lack of surveillance and regulation of this trade has resulted in the wide trade of invasive species.

In response, scientists from the University of Adelaide have utilised specialised software called ‘web scrapers’ to monitor trade on public classifieds websites. These web scrapers automate the collection of online advertisements. This allowed the researchers to detect thousands of advertisements for weeds over a 12-month period. 

Opuntia, a notorious invader that was found traded online.

Despite Australia’s laws banning the trade of harmful weeds, advertisements were observed across the country. Some of the weeds advertised were associated with uses by traders, including food and medicine. The most popular uses were associated with pond and aquarium plants such as filtering water and providing fish habitat.

The researchers recommend that governments adopt web scraping technology to assist in regulating online trade of plants. They also highlight increasing public awareness and seeking cooperation from online marketplaces as solutions to this growing problem.

“Currently, these online marketplaces allow people to advertise and purchase invasive species, whether they are aware of it or not,” says Maher. “Regulation is needed, but we also need to cultivate awareness of amongst plant growers of this issues and we need help from marketplaces to regulate trade on their end.”

The technology developed in this study is now being utilised by biosecurity agencies in Australia to monitor and regulate the illegal trade of plants and animals online.

Original source:

Maher J, Stringham OC, Moncayo S, Wood L, Lassaline CR, Virtue J, Cassey P (2023) Weed wide web: characterising illegal online trade of invasive plants in Australia. NeoBiota 87: 45-72. https://doi.org/10.3897/neobiota.87.104472

For the first time in 100 years: South American bat rediscovered after a century

The finding increases the range of the species by about 280 km, and highlights the importance of protected areas in the conservation of wildlife.

The Strange Big-eared Brown Bat, Histiotus alienus, was first described by science in 1916, by the British zoologist Oldfield Thomas. The description of the species was based on a single specimen captured in Joinville, Paraná, in southern Brazil.

For more than 100 years, the species had never been captured, being known only by its holotype—the specimen that bears the name, and represents morphological and molecular traits of a species—deposited in The Natural History Museum in London, United Kingdom. Now, after a century, the species has been rediscovered. Scientists Dr Vinícius C. Cláudio, Msc Brunna Almeida, Dr Roberto L.M. Novaes, and Dr Ricardo Moratelli, Fundação Oswaldo Cruz, Brazil and Dr Liliani M. Tiepolo, and Msc Marcos A. Navarro, Universidade Federal do Paraná, Brazil have published details on the sighting in a paper in the open access journal ZooKeys.

During field expeditions of the research project Promasto (Mammals from Campos Gerais National Park and Palmas Grasslands Wildlife Refuge) in 2018, the researchers captured one specimen of big-eared bat at Palmas Grassland Wildlife Refuge.  To catch it, they used mist-nets—equipment employed during the capture of bats and birds—set at the edge of a forest patch. When they compared it to the Tropical Big-eared Brown Bat (Histiotus velatus), commonly captured in the region, they found it was nothing like it.

The unidentified big-eared bat specimen was then collected and deposited at the Museu Nacional in Rio de Janeiro, Brazil, for further studies.

After comparing this puzzling specimen against hundreds of other big-eared brown bats from almost all the species in the genus, the researchers were able to conclusively identify the bat as a Strange Big-eared Brown Bat and confirm its second known record. “Since the description of several the species within the genus is more than one hundred years old and somewhat vague, comparisons and data presented by us will aid the correct identification of big-eared brown bats,” they say.

The Strange Big-eared Brown Bat has oval, enlarged ears that are connected by a very low membrane; general dark brown coloration in both dorsal and ventral fur; and about 100 to 120 mm in total length. This combination of characters most resembles the Southern Big-eared Brown Bat (Histiotus magellanicus), in which the membrane connecting ears is almost absent.

The only known record of the Strange Big-eared Brown Bat until now was from Joinville, Santa Catarina state, southern Brazil, which is about 280 kilometers away from where it was spotted in 2018. So far, the species is known to occur in diverse terrains, from dense rainforests to araucaria and riparian forests and grasslands, at altitudes from sea level to over 1200 m a.s.l.

This increase in the distribution of the species, however, does not represent an improvement on its conservation status: the species is currently classified as Data Deficient by the International Union for the Conservation of Nature. Its habitat, the highly fragmented Atlantic Forest, is currently under pressure from agricultural activity.

But there is still hope: “The new record of H. alienus in Palmas is in a protected area, which indicates that at least one population of the species may be protected,” the researchers write in their study.

Research article:

Cláudio VC, Almeida B, Novaes RLM, Navarro MA, Tiepolo LM, Moratelli R (2023) Rediscovery of Histiotusalienus Thomas, 1916 a century after its description (Chiroptera, Vespertilionidae): distribution extension and redescription. ZooKeys, 1174, 273–287. doi: 10.3897/zookeys.1174.108553

Digitising UK Natural History Collections is vital to understand life on Earth, reports the Natural History Museum

In a paper published in the journal Research Ideas and Outcomes, authors estimate £18 million has been saved in efficiencies by researchers accessing digital specimens rather than physical collections.

· Scientists from the Natural History Museum (NHM) deep-dive into the uses and users of natural history collections held in the UK

· Modest estimates report a saving of £18 million in efficiencies by researchers accessing digital data rather than physical collections

· Today, software can complete in a week what it would take a human two years to achieve

· Call for investment to secure the UK’s stance as a world superpower in science and tech, and for a future in which both people and planet thrive

A new report has evaluated the use and impact of digitised natural science collections held in the UK and how they contribute to scientific, commercial and societal benefits.

UK natural science collections hold more than 137 million items spanning an incredible 4.56-billion-year history of life on Earth. These collections have emerged as a pivotal data resource to understanding the Earth in its past and current state – and will continue to inform the investors and policy-makers of the future.

UK natural science data in demand

GBIF—the Global Biodiversity Information Facility—is an international database providing open access data on all types of life on Earth. In this paper led by the NHM, scientists report that there are 7.6 million specimens, less than 6% of total UK natural science collections sampled, freely accessible on GBIF.

They found that 12% of the total peer-reviewed journal articles citing GBIF data specifically cite UK natural science collections. These data currently make up just 0.3% of total occurrences on GBIF, meaning they punch an incredible 40 times above their weight.

When asked previously, over 90% of GBIF users linked their use of these data to advancing the UN Sustainable Development Goals which look to reduce hunger, poverty and inequality, and spur economic growth while tackling climate change and protecting the oceans and forests.

The case for digitising UK natural science collections

The introduction of these collections onto a digital platform has revolutionised scientific research. In this paper published in the journal Research Ideas and Outcomes, the authors estimate £18 million has been saved in efficiencies by researchers accessing digital specimens rather than physical collections, assuming a minimal single physical visit replaced per citation. Of this, £1.4 million has been attributed to UK researchers, money which can be reinvested back into UK science institutions – those at the forefront of finding solutions to real world problems.

Lead author and Deputy Head of Digital, Data and Informatics, Helen Hardy says, ‘The advancement of digitisation has been truly transformational to the scientific community. Today it’s possible to use software that takes a week to achieve the type of information gathering it would take a human over 3,000 hours, or two years, to complete – individuals realising an entire life’s work in just a few months! Anticipation is high for further innovations such as the further integration of artificial intelligence into taxonomic work.’

UK government want the UK to be a science and technology superpower, and natural science collections provide a unique opportunity to achieve this. To unlock the true potential of collections data, UK Natural Science collections are joining forces through the Distributed System of Scientific Collections UK (DiSSCo) to make the case for investment of £155 million in a research infrastructure which is expected to unlock at least a seven- to ten- fold economic return on investment. Working alongside the Arts & Humanities Research Council (AHRC) and UK Research and Innovation (UKRI) to digitise the critical mass of collections, the data will be available through a robust technological infrastructure and continually developed in line with recent innovations.

Ken Norris, Deputy Director of Science at the NHM says, ‘In the midst of a planetary emergency, and what some experts believe to be the Earth’s sixth mass extinction event, estimates say that over 50% of the world’s GDP, which equates to approx. 44 trillion dollars, is dependent on the natural world. By understanding what is in collections now, both on a national and international scale, we can identify trends, necessary actions, and what we need to collect to underpin policy and investment decisions for a future where people and planet thrive.’

Hardy H, Livermore L, Kersey P, Norris K, Smith V, Pullar J (2023) Users and uses of UK Natural History Collections – a Summary, https://doi.org/10.5281/zenodo.8403318

A longer paper on this study including further detail on the methodology and findings is also available:

Hardy H, Livermore L, Kersey P, Norris K, Smith V (2023) Understanding the users and uses of UK Natural History Collections. Research Ideas and Outcomes 8: e113378 https://doi.org/10.3897/rio.9.e113378

Photo credit: Trustees of the Natural History Museum

Follow Research Ideas and Outcomes on Facebook, Twitter, and LinkedIn.

Advancing biodiversity research: new initiative bridges biodiversity and omics data standards 

The initiative, featured in an open-access methods paper in Biodiversity Data Journal, unites the Darwin Core (DwC) and Minimum Information about any (x) Sequence (MIxS) standards.

Biodiversity observation and research rely more and more on biomolecular data. The standardization this data, encompassing both primary and contextual information (metadata), is crucial for enabling data (re-)use, integration, and knowledge generation.

While both the biodiversity and the omics research communities have recognized the urgent need for (meta)data standards, they each have historically developed and adopted their own standards, making collaboration and data integration challenging.

To address the pressing need for interoperability between biodiversity and omics (meta)data standards, the Task Group (TG) for Sustainable DwC-MIxS Interoperability was formed.

Its primary mission is to bridge the gap between the (meta)data standards of two distinct organizations, the Biodiversity Information Standards (TDWG)’s Darwin Core (DwC) standard and the Genomic Standards Consortium (GSC)’s Minimum Information about any (x) Sequence (MIxS) checklist, providing a sustainable framework for data integration.

The Task Group assembled a team of experts to build semantically precise and sustained interoperability between TDWG’s DwC standard, and the MIxS checklist from the GSC.

This collaborative effort culminated in a methods paper, in which they report on building sustainable interoperability between DwC and MIxS.

The paper was published in the open-access, peer-reviewed Biodiversity Data Journal, as part of a special collection, supported by the EU-funded project BiCIKL (Biodiversity Community Integrated Knowledge Library), and looking to demonstrate the advantages and novel approaches in accessing and (re-)using linked biodiversity data. 

“With representatives from established biodiversity data infrastructures, domain experts, data generators, and publishers, we – ab initio – bridged the conceptual to the application space,”

write the task group members in their paper.

To ensure the sustainability and lasting impact of this initiative, TDWG and GSC have signed a Memorandum of Understanding on creating a continuous model to synchronize their standards.

“We trust that the activities of this TG will inspire similar activities between other metadata standards in this space, to break down silos and open a path to a more collaborative and interoperable future,”

they say in conclusion.

***

Original source:

Meyer R, Appeltans W, Duncan WD, Dimitrova M, Gan Y-M, Stjernegaard Jeppesen T, Mungall C, Paul DL, Provoost P, Robertson T, Schriml L, Suominen S, Walls R, Sweetlove M, Ung V, Van de Putte A, Wallis E, Wieczorek J, Buttigieg PL (2023) Aligning Standards Communities for Omics Biodiversity Data: Sustainable Darwin Core-MIxS Interoperability. Biodiversity Data Journal 11: e112420. https://doi.org/10.3897/BDJ.11.e112420

***

You can find all contributions published in the “Linking FAIR biodiversity data through publications: The BiCIKL approach” article collection in the open-access, peer-reviewed Biodiversity Data Journal on: https://doi.org/10.3897/bdj.coll.209.

Newly established Bulgarian Barcode of Life to support biodiversity conservation in the country

As the latest national node to join the International Barcode of Life Consortium (iBOL), its main task is to coordinate, support, and promote DNA barcoding research in Bulgaria.

On 27 September 2023, during a specialised symposium on DNA barcoding at the Bulgarian Academy of Sciences, the Bulgarian Barcode of Life (BgBOL), a Bulgarian DNA barcoding consortium, was founded. 

Logo of the Bulgarian Barcode of Life (BgBOL), a Bulgarian DNA barcoding consortium and the latest national node to join the International Barcode of Life Consortium (iBOL).

By becoming the latest national node to join the International Barcode of Life Consortium (iBOL), the main task before BgBOL will be to coordinate, support, and promote DNA barcoding research in Bulgaria, with a primary focus on the study and preservation of the country’s biodiversity.

“The Bulgarian Barcode of Life opens up new horizons and opportunities to study and understand the biodiversity in Bulgaria,”

says Dr Georgi Bonchev, Institute of Plant Physiology and Genetics at the Bulgarian Academy of Sciences (BAS).

DNA barcoding is a method to identify individual organisms based on nucleotide sequences captured from short, predefined and standardised segments of DNA.

Dr Georgi Bonchev explains the DNA barcoding method at the specialised symposium held on 27 September 2023 at the Bulgarian Academy of Sciences. 
Photo by the Bulgarian Academy of Sciences.

The formation of the BgBOL consortium is expected to strengthen the network of collaborations, ultimately contributing to the broader dissemination and popularisation of DNA barcoding research in the region.BgBOL was created by seven academic institutions: Institute of Plant Physiology and Genetics (BAS), Institute of Biodiversity and Ecosystem Research, National Museum of Natural History (BAS), Sofia University “St. Kliment Ohridski”, AgroBioInstitute (Agricultural Academy), University of Forestry, and Pensoft in its role of a scientific publisher and tech innovator well-known in the field of biodiversity science.

Prof. Lyubomir Penev joined the symposium with a talk on the publication, dissemination and management of DNA barcoding data. His presentation also touched on the relevant biodiversity data workflows and tools currently in development at Pensoft with the support of the Horizon 2020-funded project BiCIKL.
Photo by the Bulgarian Academy of Sciences.

As part of the event, Pensoft’s founder and CEO Prof. Lyubomir Penev led a discussion on the publication, dissemination and management of DNA barcoding data. His presentation also touched on the relevant biodiversity data workflows and tools currently in development at Pensoft with the support of the Horizon 2020-funded project BiCIKL (abbreviation for Biodiversity Community Integrated Knowledge Library).

“I’d like to congratulate everyone involved in the establishment of the Bulgarian Barcode of Life! This is a huge step forward in advancing DNA barcoding research in Bulgaria and, ultimately, the preservation of the country’s amazing biodiversity,”

comments Prof. Lyubomir Penev.

***

About the International Barcode of Life:

The International Barcode of Life Consortium is a research alliance undertaking the largest global biodiversity science initiative: create a digital identification system for life that is accessible to everyone.

iBOL is working to establish an Earth observation system that will discover species, reveal their interactions, and establish biodiversity baselines. The consortium is tracking ecosystems across the planet and exploring symbiomes – the distinct fungal, plant, and animal species associated with host organisms. Our goal is to complete this research and establish baseline data for science and society’s benefit.

Science in the sunshine: Pensoft’s month of European conferences

Pensoft participated in five conferences across Germany and Italy in September 2023.

For the Pensoft team, September 2023 was a busy and exciting month filled with conferences. Travelling across Europe, they promoted journals, connected with the scientific community, and rewarded exceptional research with free article publications. 

Let’s take a look back at all the events of the past month.

Wildlife Research and Conservation 2023

Wildlife Research and Conservation 2023 took place in Berlin between the 9th and 11th of September. Jointly organised by the Leibniz Institute for Zoo and Wildlife Research, the European Association of Zoos and Aquaria and WWF Germany, it was a fantastic event, featuring an exchange of ideas between wildlife scientists from different disciplines related to mammalian species.

Image showing the WRC2023 logo and two women promoting Pensoft at a conference.
Pensoft representatives Mrs. Boriana Ovcharova and Mrs. Anna Sapundzhieva, ready to greet attendees in the sun.

The conference looked at evolutionary adaptations from the perspective of behavioural ecology, reproduction biology, genetics, physiology, as well as nature conservation. It particularly focused on the pressing issues of wildlife research and species conservation in the context of global environmental change. Most of the ≈100 participants were young scientists from more than 30 countries.

The Pensoft team greeted fellow attendees with an exhibition stand and presented the conservation and ecology-focused journals Neobiota, Nature Conservation, One Ecosystem, and Biodiversity Data Journal. Pensoft also advocated for EuropaBon, who are designing an EU-wide framework for monitoring biodiversity and ecosystem services, and REST-COAST, whose mission is to provide the tools to restore environmental degradation of rivers and coasts. Within both European-funded initiatives, Pensoft is a key dissemination partner that contributes expertise in science communication, scholarly publishing, and the development of digital tools and platforms.

Man holding a certificate.
Joao Pedro Meireles posing with his Best Poster award.

Pensoft presented Joao Pedro Meireles from Utrecht University with the Best Poster Award for his research on pair compatibility in okapis, entitling him to a free publication in one of Pensoft’s open-access journals.

“My study looked at pair compatibility in the zoo breeding programme of Okapi. During breeding introductions, sometimes the male becomes aggressive towards the female and we decided to investigate the potential factors. We ran a survey among all zoos that house the species in Europe and we found that differences in husbandry were linked to the aggressiveness performed by the males.”

Joao Pedro Meireles, Utrecht University

GfÖ Annual Meeting 2023

From the 12th to 16th of September, the German Centre for Integrative Biodiversity Research hosted the 52nd Annual Meeting of the Ecological Society of Germany, Austria and Switzerland in Leipzig, Germany. The meeting welcomed more than 1,100 participants from around the world, including scientists, policymakers, educators, and environmental enthusiasts.

This year’s meeting was held with the theme: “The future of biodiversity – overcoming barriers of taxa, realms and scales.” There was a particular emphasis on future challenges and opportunities facing biodiversity, and how to address and manage these in an interdisciplinary and integrative way. 

Woman standing beside man.
Mrs. Boriana Ovcharova (Pensoft) with Neobiota Editor-in-Chief Prof. Dr. Ingolf Kühn.

Conference participants were welcomed at the Pensoft stand, where they could learn more about the projects EuropaBon and SELINA, which deal with biodiversity, ecosystem and natural capital topics. 

The Pensoft team took great pleasure in talking to attendees about their fantastic journals focused on ecology and biodiversity, including Food and Ecological Systems Modelling Journal, Neobiota, Nature Conservation, One Ecosystem, Vegetation Classification and Survey and Research Ideas and Outcomes, as well as meeting with authors, reviewers and editors.

European Conference on Ecological Modelling

Also in Leipzig, the European Conference on Ecological Modelling took place between the 4th and 8th of September. The event focused on the transformation of how societies deal with natural resources in a world where biodiversity and ecosystem services are at high risk. 

The ECEM 2023 continued a series of conferences launched by the European chapter of ISEM, the International Society for Ecological Modelling. ISEM promotes the international exchange of ideas, scientific results, and general knowledge in the areas of systems’ analysis and simulations in ecology, and the application of ecological modelling for natural resource management.

Pensoft presented its innovative journals in the field of ecology and modelling, such as Nature Conservation, Food and Ecological Systems Modelling Journal and Neobiota, as well as the projects PoshBee and B-GOOD, which aim to help beekeepers and support healthy bee populations where Pensoft acts as the dissemination partner.

The Bundesinstitut für Risikobewertung team presented a poster on the Formal Model format and potential new MiDox formats, unique publication types that can be submitted to Pensoft’s Food and Ecological Modelling Journal.

118th Congress of the Italian Botanical Society

Three men sitting before a projector screen at a conference.
Speakers at the 118th Congress of the Italian Botanical Society.

Pensoft was proud to sponsor the 118th Congress of the Italian Botanical Society, which took place in Pisa, Italy from the 13th to 16th of September. Experts in various fields of Botany gathered to share their research on the following topics:

  • Molecular and cell biology
  • Taxonomy, systematics and evolution
  • Biodiversity
  • Environmental monitoring and policies
  • Biotechnology and applied botany
  • Ecology

Pensoft awarded Emma Cocco, University of Cagliari, and Lucrezia Laccetti, University of Naples Federico II, a free article publication in any of Pensoft’s journals related to botany.  Additionally, Silvia Cannucci, University of Siena, and Flavia Guzzi received the Italian Botanical Society’s support for publishing papers in Italian Botanist for their excellent research.

Four people at a certificate presentation.
Best poster award, presented by Pensoft.

94th Annual Meeting of the Paläontologische Gesellschaft

Finally, between the 18th and 22nd of September, the 94th Annual Meeting of the Paläontologische Gesellschaft was held in Jena, Germany. Pensoft couldn’t make it in person, but still made sure to showcase journals publishing papers in palaeontology, especially Zitteliana and Fossil Record. The international meeting was a great success, and focused on cutting-edge research from palaeobiology, palaeontology, geobiology and related subjects.

Journals promoted by Pensoft at the 94th Annual Meeting of the Paläontologische Gesellschaft.

Summer may be well and truly over, but as a new academic year begins, Pensoft looks forward to attending more conferences, rewarding more incredible research, and connecting with more of the scientific community. Thank you to everyone who contributed to or engaged with Pensoft’s open-access journals this year, and here’s to a successful final quarter of 2023.

***

Follow Pensoft on social media: