Comprehensive review of Burmese python science released

A USGS-led publication offers a new look at the constrictor that has invaded southern Florida.

The U.S. Geological Survey has released a comprehensive synthesis of Burmese python science, showcasing results from decades of USGS-funded research on python biology and potential control tools. The giant constrictor now represents one of the most challenging invasive species management issues worldwide.

Occurrence records were obtained from a large geospatial database of invasive species reports (Early Detection & Distribution Mapping System) submitted by both researchers and the public. The map illustrates the chronology of python removals across southern Florida and represents the best professional estimate of the invasion front, which is not exact and will change over time.

“For the first time, all the science on python ecology and potential control tools has been consolidated into one document, allowing us to identify knowledge gaps and important research areas to help inform future python management strategies. This synthesis is a major milestone for Burmese python research; six years in the making, it represents the consensus of the scientific community on the python invasion,” said USGS Ecologist Jacquelyn Guzy, lead author for the publication.

Burmese pythons were confirmed to have an established breeding population in Everglades National Park in 2000. The population has since expanded and now occupies much of southern Florida. They consume a wide range of animals and have altered the food web and ecosystems across the Greater Everglades.

The synthesis, which pulled together the expertise of scientists and managers nationwide, provides a breakdown of 76 prey species found in python digestive tracts, which primarily included mammals and birds, as well as two reptile species, American alligator and Green iguana. However, as the scientists noted, the number of animals may increase as the python population expands to new areas.

It also reports new findings including a summary of body sizes of pythons measured by state and federal agencies between 1995 and 2022, as well as descriptions of length-mass relationships, the estimated geographic spread of pythons over time, and a comprehensive assessment of all control tools explored to date.

Illustration by Natalie Claunch demonstrates typical features of the Burmese python.

One of the hallmark issues of the Burmese python invasion has been the difficulty of visually detecting or trapping pythons in an immense natural landscape, Guzy said. Pythons do not readily enter any type of trap, occupy vast stretches of inaccessible habitat, and camouflage extremely well within the subtropical Florida environment.

“Extremely low individual python detection rates hamper our ability to both estimate python abundance and expand control tools across the extensive natural landscape” says USGS Research Ecologist Kristen Hart, an author of the publication.

Because the Burmese python has spread throughout southern Florida, eradication of the population across the landscape is not possible with existing tools, the publication states. However, researchers at USGS and partner institutions are exploring potential novel techniques such as genetic biocontrol, that may one day provide an avenue towards larger-scale population suppression.

In the meantime, important areas of research according to the publication include reproductive life history and estimation of demographic vital rates such as survival, to help managers evaluate and refine existing control tools. With improved control tools managers may be able to reduce population expansion and minimize the future impact of pythons on the environment.

The USGS python research over the past decades has been largely supported by the USGS Greater Everglades Priority Ecosystem Sciences (GEPES) Program with additional support from the USGS Biothreats and Invasive Species program.

Research article:

Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM (2023) Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NeoBiota 80: 1-119. https://doi.org/10.3897/neobiota.80.90439

Story originally published by the USGS. Republished with permission.

Redefining nature-based decision-making: Pensoft joins EU project SELINA

“Ecosystem services is one of the topics that Pensoft has been involved in for over 10 years,” points out COO Prof Pavel Stoev.

Ambitious goals have been set by the European Union, in order to tackle the biodiversity conservation challenges over the coming decade. No less ambitious are the goals of the Horizon Europe project SELINA, which is one of the current major initiatives looking in the same direction. 

SELINA (Science for Evidence-based and Sustainable Decisions about Natural Capital) is a transdisciplinary project aimed at promoting the conservation of biodiversity, enhancing ecosystem conditions, and supporting the sustainable use of the environment through evidence-based decision-making.

As an experienced science communicator and open-science publisher, Pensoft will be leading the project’s communication and dissemination activities.

“Ecosystem services is one of the topics that Pensoft has been involved in for more than 10 years, so it was only natural for us to continue our work as a communicator of scientific information in the ambitious SELINA project as well,”

says Prof Pavel Stoev, COO at Pensoft.

“We have already collaborated with many of the partners within the earlier EC Horizon 2020 project ESMERALDA, which concluded with the launch of a pan-European network of scientific institutions engaged with biodiversity conservation and ecosystem services.

In addition, Pensoft has been strongly connected to the community through the scholarly journal One Ecosystem, which is supported by Ecosystem Services Partnership, and offers an opportunity for scientists in the field to publish their results in a new and innovative way.”

he adds.

The project

SELINA was launched in July 2022 and will run for 5 years. Having received EUR 13 million in funding, the project is seen as an unprecedented opportunity for smart, cost-effective, and nature-based solutions to historic societal challenges such as climate change, biodiversity loss, and food security. 

One of the project’s main objectives is to identify biodiversity, ecosystem condition, and ecosystem service factors that can be successfully integrated into decision-making processes in both the public and private sectors. 

To achieve this objective, SELINA will develop, test, and integrate new and existing knowledge, including methodological approaches to improve biodiversity, ecosystem condition, and ecosystem service information uptake by decision-makers. 

In addition, the project will utilise EU-wide workshops and multi-disciplinary Communities of Practice involving a wide range of stakeholders, including scientists, policymakers, business leaders, and civil society organisations. 

The project will also organise Demonstration Projects on biodiversity, ecosystem condition, and ecosystem service integration in decision-making and co-create a Compendium of Guidance that will allow stakeholders to make full use of the project’s results and fit-for-purpose recommendations with real-world applications in policy-making and business decisions. 

International consortium

SELINA project brings together experts from 50 partnering organisations across all European Union member states, Norway, Switzerland, Israel, and the United Kingdom.

The project comprises a Pan-European and transdisciplinary network of professionals from the academic and non-academic sectors with various (inter)disciplinary backgrounds – including ecologists, economists, social scientists – who have agreed to work collaboratively to support transformative change based on evidence-based decision-making related to the management of natural resources.

Find out more about the project on the SELINA website: project-selina.eu/.

Stay up to date with the project’s progress on Twitter, Facebook, Linkedin and YouTube.

BiCIKL Project supports article collection in Biodiversity Data Journal about use of linked data

Welcomed are taxonomic and other biodiversity-related research articles, which demonstrate the advantages and novel approaches in accessing and (re-)using linked biodiversity data

The EU-funded project BiCIKL (Biodiversity Community Integrated Knowledge Library) will support free of charge publications* submitted to the dedicated topical collection: “Linking FAIR biodiversity data through publications: The BiCIKL approach” in the Biodiversity Data Journal, demonstrating advanced publishing methods of linked biodiversity data, so that they can be easily harvested, distributed and re-used to generate new knowledge. 

BiCIKL is dedicated to building a new community of key research infrastructures, researchers and citizen scientists by using linked FAIR biodiversity data at all stages of the research lifecycle, from specimens through sequencing, imaging, identification of taxa, etc. to final publication in novel, re-usable, human-readable and machine-interpretable scholarly articles.

Achieving a culture change in how biodiversity data are being identified, linked, integrated and re-used is the mission of the BiCIKL consortium. By doing so, BiCIKL is to help increase the transparency, trustworthiness and efficiency of the entire research ecosystem.


The new article collection welcomes taxonomic and other biodiversity-related research articles, data papers, software descriptions, and methodological/theoretical papers. These should demonstrate the advantages and novel approaches in accessing and (re-)using linked biodiversity data.

To be eligible for the collection, a manuscript must comply with at least two of the conditions listed below. In the submission form, the author needs to specify the condition(s) applicable to the manuscript. The author should provide the explanation in a cover letter, using the Notes to the editor field.

All submissions must abide by the community-agreed standards for terms, ontologies and vocabularies used in biodiversity informatics. 

The data used in the articles must comply with the Data Quality Checklist and Fair Data Checklist available in the Authors’ instructions of the journal.


Conditions for publication in the article collection:

  • The authors are expected to use explicit Globally Unique Persistent and Resolvable Identifiers (GUPRI) or other persistent identifiers (PIDs), where such are available, for the different types of data they use and/or cite in the manuscripts (specimens IDs, sequence accession numbers, taxon name and taxon treatment IDs, image IDs, etc.)

  • Global taxon reviews in the form of “cyber-catalogues” are welcome if they contain links of the key data elements (specimens, sequences, taxon treatments, images, literature references, etc.) to their respective records in external repositories. Taxon names in the text should not be hyperlinked. Instead, under each taxon name in the catalogue, the authors should add external links to, for example, Catalogue of Life, nomenclators (e.g. IPNI, MycoBank, Index Fungorum, ZooBank), taxon treatments in Plazi’s TreatmentBank or other relevant trusted resources.

  • Taxonomic papers (e.g. descriptions of new species or revisions) must contain persistent identifiers for the holotype, paratypes and at least most of the specimens used in the study.

  • Specimen records that are used for new taxon descriptions or taxonomic revisions and are associated with a particular Barcode Identification Number (BIN) or Species Hypothesis (SH) should be imported directly from BOLD or PlutoF, respectively, via the ARPHA Writing Tool data-import plugin.

  • More generally, individual specimen records used for various purposes in taxonomic descriptions and inventories should be imported directly into the manuscript from GBIF, iDigBio, or BOLD via the ARPHA Writing Tool data-import plugin. 

  • In-text citations of taxon treatments from Plazi’s TreatmentBank are highly welcome in any taxonomic revision or catalogue. The in-text citations should be hyperlinked to the original treatment data at TreatmentBank.

  • Hyperlinking other terms of importance in the article text to their original external data sources or external vocabularies is encouraged.

  • Tables that list gene accession numbers, specimens and taxon names, should conform to the Biodiversity Data Journal’s linked data tables guidelines.

  • Theoretical or methodological papers on linking FAIR biodiversity data are eligible for the BiCIKL collection if they provide real examples and use cases.

  • Data papers or software descriptions are eligible if they use linked data from the BiCIKL’s partnering research infrastructures, or describe tools and services that facilitate access to and linking between FAIR biodiversity data.

  • Articles that contain nanopublications created or added during the authoring process in Biodiversity Data Journal. A nanopublication is a scientifically meaningful assertion about anything that can be uniquely identified and attributed to its author and serve to communicate a single statement, for example biotic relationship between taxa, or habitat preference of a taxon. The in-built workflow ensures the linkage and its persistence, while the information is simultaneously human-readable and machine-interpretable.
  • Manuscripts that contain or describe any other novel idea or feature related to linked or semantically enhanced biodiversity data will be considered too.

We recommend authors to get acquainted with these two papers before they decide to submit a manuscript to the collection: 


Here are several examples of research questions that might be explored using semantically enriched and linked biodiversity data: 

(1) How does linking taxon names or Operational Taxonomic Units (OTUs) to related external data (e.g. specimen records, sequences, distributions, ecological & bionomic traits, images) contribute to a better understanding of the functions and regional/local processes within faunas/floras/mycotas or biotic communities?

(2) How could the production and publication of taxon descriptions and inventories – including those based mostly on genomic and barcoding data – be streamlined? 

(3) How could general conclusions, assertions and citations in biodiversity articles be expressed in formal, machine-actionable language, either to update prior work or express new facts (e.g. via nanopublications)? 

(4) How could research data and narratives be re-used to support more extensive and data-rich studies? 

(5) Are there other taxon- or topic-specific research questions that would benefit from richer, semantically enhanced FAIR biodiversity data?


All manuscripts submitted to the Biodiversity Data Journal have their data audited by data scientists prior to the peer review stage.

Once published, specimen records data are being exported in Darwin Core Archive to GBIF.

The data and taxon treatments are also exported to several additional data aggregators, such as TreatmentBank, the Biodiversity Literature Repository, and SiBILS amongst others. The full-text articles are also converted to Linked Open Data indexed in the OpenBiodiv Knowledge Graph.


All articles will need to acknowledge the BiCIKL project, Grant No 101007492 in the Acknowledgements section.

* The publication fee (APC) is waived for standard-sized manuscripts (up to 40,000 characters, including spaces) normally charged by BDJ at € 650. Authors of larger manuscripts will need to cover the surplus charge (€10 for each 1,000 characters above 40,000). See more about the APC policy at Biodiversity Data Journal, or contact the journal editorial team at: bdj@pensoft.net.

Follow the BiCIKL Project on Twitter and Facebook. Join the conservation on via #BiCIKL_H2020.

You can also follow Biodiversity Data Journal on Twitter and Facebook.

Japanese scientists use a novel research approach to study populations of deep-sea brittle stars

Researchers designed two new sets of PCR primers for the detection of brittle stars through eDNA metabarcoding.

For the first time, researchers developed a metabarcoding technology for brittle stars.

Japanese scientists, led by Dr Masanori Okanishi of the Hiroshima Shudo University and the University of Tokyo, analyzed environmental DNA (eDNA) released from marine invertebrates in the water, and successfully identified the species they were looking for. The study is published in the open-access journal Metabarcoding and Metagenomics.

Metabarcoding allows researchers to easily and quickly identify species and determine their number in a given location on the basis of environmental DNA (that is DNA released into, for example, the water in a particular lake). 

In Japan, this method has been used successfully to detect the number of species in specific locations in the sea by sampling as little as a bucket of water. Monitoring species is part of the effort for conservation of biological resources and maintenance of their economic value, and metabarcoding can be utilized as a less labor-intensive and more cost-effective tool for marine surveys of biodiversity.

The new study reports on the research team’s development of the first DNA primers for metabarcoding of brittle stars. 

Brittle stars are the most abundant species in the phylum Echinodermata (approximately 2,100 species), making them promising indicator organisms for environmental DNA metabarcoding. These marine invertebrates are thought to release abundant environmental DNA due to their size, large populations, and habitats in a variety of seafloor environments.

 Brittle stars collected from Sagami Sea, Japan (credit: Hisanori Kohtsuka, The University of Tokyo)

To determine the origin of DNA sequences obtained from samples and used for metabarcoding, Okanishi’s team constructed a database of reference DNA sequences based on specimens identified to 60 brittle star species from Sagami Bay. 

Up until now, metabarcoding had not been used for organisms with little mobility such as brittle stars, because many reference DNA sequences had been misidentified or unidentified. The new database will aid further research and application of the technology.

“If metabarcoding becomes possible through the development of additional primers and richer databases of reference DNA sequences, it will be possible to monitor the marine environment with a precision never before thought possible,”

say the authors in conclusion.

Original source: Okanishi M, Kohtsuka H, Wu Q, Shinji J, Shibata N, Tamada T, Nakano T, Minamoto T (2023) Development of two new sets of PCR primers for eDNA metabarcoding of brittle stars (Echinodermata, Ophiuroidea). Metabarcoding and Metagenomics 7: e94298. https://doi.org/10.3897/mbmg.7.94298

Expert Contact: Masanori Okanishi: Hiroshima Shudo University Assistant Professor. E-mail: okahoku@gmail.com


Follow Metabarcoding & Metagenomics on Facebook and Twitter.

New spider genus named after pop band ABBA

Two ABBA-mad arachnologists from Murdoch University in Perth, Australia, have described a new genus dedicated to the famous band.

Spiders of the family Araneidae are known for building vertical orbicular webs to catch upon prey. They can be easily identified by their eye pattern, the abdomen normally overlapping the carapace, and complex genitalia. The family currently has 188 genera and 3,119 species worldwide.

Two scientists from Murdoch University in Perth (Australia), Dr Pedro Castanheira and Dr Volker Framenau, described a new spider genus of Araneids following a comprehensive study of orb-weaving spiders found in Australian zoological collections. They named it after one of their favourites bands, the Swedish pop group ABBA, paying tribute to the band members Agnetha Fältskog, Björn Ulvaeus, Benny Andersson, and Anni-Frid Lyngstad.

The band’s “songs and subsequent musicals Mamma Mia! (2008) and Mamma Mia – Here We Go again! (2018), provided hours of entertainment for the authors,” they explain in their study, which was published in the journal Evolutionary Systematics.

Abba transversa. Photo by Volker Framenau

The new genus is composed of a relatively small single species (ca. 3-4 mm), Abba transversa (Rainbow, 1912), whose specimens are currently known from the coastal area of New South Wales and Queensland. It is differentiated from other species within the family by the presence of two dark spots in the middle of abdomen and by the thick macrosetae on the first pair of legs of the males.

The description comes after 15 years of scientific work, with the researchers looking at 12,000 records in Australian museums and overseas collections.

“Describing new taxa is vital for conservation management plans to assess biodiversity and protect forests areas across Australia,” says study author Dr Pedro Castanheira. “Currently, 80% of Australian spider species are unknown, and many of the described ones are misplaced in different genera, like Abba transversa used to be.”

Original source:

Castanheira PS, Framenau VW (2023) Abba, a new monotypic genus of orb-weaving spiders (Araneae, Araneidae) from Australia. Evolutionary Systematics 7(1): 73-81. https://doi.org/10.3897/evolsyst.7.98015

Follow Evolutionary Systematics on Facebook and Twitter.

BiCIKL keeps on adding project outcomes in own collection in RIO Journal

The publications so far include the grant proposal; conference abstracts, a workshop report, guidelines papers and deliverables submitted to the Commission.

The dynamic open-science project collection of BiCIKL, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” (doi: 10.3897/rio.coll.105), continues to grow, as the project progresses into its third year and its results accumulate ever so exponentially. 

Following the publication of three important BiCIKL deliverables: the project’s Data Management Plan, its Visual identity package and a report, describing the newly built workflow and tools for data extraction, conversion and indexing and the user applications from OpenBiodiv, there are currently 30 research outcomes in the BiCIKL collection that have been shared publicly to the world, rather than merely submitted to the European Commission.

Shortly after the BiCIKL project started in 2021, a project-branded collection was launched in the open-science scholarly journal Research Ideas and Outcomes (RIO). There, the partners have been publishing – and thus preserving – conclusive research papers, as well as early and interim scientific outputs.

The publications so far also include the BiCIKL grant proposal, which earned the support of the European Commission in 2021; conference abstracts, submitted by the partners to two consecutive TDWG conferences; a project report that summarises recommendations on interoperability among infrastructures, as concluded from a hackathon organised by BiCIKL; and two Guidelines papers, aiming to trigger a culture change in the way data is shared, used and reused in the biodiversity field. 

In fact, one of the Guidelines papers, where representatives of the Consortium of European Taxonomic Facilities (CETAF), the Society for the Preservation of Natural History Collections (SPNHC) and the Biodiversity Heritage Library (BHL) came together to publish their joint statement on best practices for the citation of authorities of scientific names, has so far generated about 4,000 views by nearly 3,000 unique readers.

At the time of writing, the top three of the most read papers in the BiCIKL collection is completed by the grant proposal and the second Guidelines paper, where the partners – based on their extensive and versatile experience – present recommendations about the use of annotations and persistent identifiers in taxonomy and biodiversity publishing. 

Access to data and services along the entire data and research life cycle in biodiversity science.
The figure was featured in the BiCIKL grant proposal, now made available from the BiCIKL project collection in RIO Journal.

What one might find quite odd when browsing the BiCIKL collection is that each publication is marked with its own publication source, even though all contributions are clearly already accessible from RIO Journal

So, we can see many project outputs marked as RIO publications, but also others that have been published in the likes of F1000Research, the official journal of TDWG: Biodiversity Information Science and Standards, and even preprints servers, such as BiohackrXiv

This is because one of the unique features of RIO allows for consortia to use their project collection as a one-stop access point for all scientific results, regardless of their publication venue, by means of linking to the original source via metadata. Additionally, projects may also upload their documents in their original format and layout, thanks to the integration between RIO and ARPHA Preprints. This is in fact how BiCIKL chose to share their latest deliverables using the very same files they submitted to the Commission.

“In line with the mission of BiCIKL and our consortium’s dedication to FAIRness in science, we wanted to keep our project’s progress and results fully transparent and easily accessible and reusable to anyone, anywhere,” 

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft. 

“This is why we opted to collate the outcomes of BiCIKL in one place – starting from the grant proposal itself, and then progressively adding workshop reports, recommendations, research papers and what not. By the time BiCIKL concludes, not only will we be ready to refer back to any step along the way that we have just walked together, but also rest assured that what we have achieved and learnt remains at the fingertips of those we have done it for and those who come after them,” he adds.

***

You can keep tabs on the BiCIKL project collection in RIO Journal by subscribing to the journal newsletter or following @RIOJournal on Twitter and Facebook.

Towards a climate-neutral society: Pensoft takes part in the Horizon project ForestPaths

Apart from science communication, Pensoft is also tasked with the development and maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities

Dedicated to bridging the gap between science, policy, industry and society, Pensoft is striving to maximise ForestPaths’ impact in meeting Europe’s climate and biodiversity targets
The backdrop

The European Union (EU) has set ambitious targets to reduce greenhouse gas emissions by at least 55% in 2030 and to become climate neutral by 2050, which require urgent and major societal and economic reforms. 

In the meantime, the EU also aims to protect biodiversity and reverse the degradation of ecosystems, while using natural resources to mitigate climate change. 

ForestPaths – a recently started Horizon Europe project will help meet Europe’s climate and biodiversity targets by providing clear policy options that enable European forests and the forest-based sector to contribute to climate change mitigation, while conserving their biodiversity and sustaining the services they provide to people.

As an experienced science communicator, Pensoft is dedicated to maximising ForestPaths’ impact. The team will do so by means of tailored communication, dissemination and exploitation strategies aimed at sharing the project’s results with relevant stakeholder groups.

Furthermore, Pensoft is tasked with the development and long-term maintenance of the CANOPY platform, whose aim is to support policymakers and national and regional authorities by granting them access to the knowledge and scientific evidence acquired within ForestPaths long after the project is finalised.

The ForestPaths approach

ForestPaths will work with practitioners through four demo cases to determine climate- and biodiversity-smart forest management options

Building on these options, the project will collaborate with policymakers and key authorities through a series of Policy labs, where the partners will co-design policy pathways, which will then be analysed with next-generation integrated assessment techniques

Lastly, ForestPaths will apply this framework for an all-round assessment of the climate mitigation potential of European forests and the forest-based sector.

Aerial view of a forest road.
The ForestPaths legacy

ForestPaths’ policy pathways – as well as their supporting information and evidence – will be made openly available through the project’s policy-support platform CANOPY, hosted on the ForestPaths website. 

The platform, whose launch is scheduled for 2026, will feature an interactive policy analysis tool explaining the policy pathways and showcasing their implications, as well as providing detailed assessment results and policy recommendations in an easily accessible manner. Its long-term mission is to become the go-to place for easily accessible assessment results and policy recommendations.

“We are excited to be doing our part for Europe’s fight for climate neutrality by extending ForestPaths reach to policy, industry and society at large! As an open-access scientific publisher engaged in about 50 environmental research projects, Pensoft echoes ForestPaths’ aim to support the EU’s climate neutrality transition through what we are sure will be a prolific international research collaboration,” says ForestPaths’ WP7 leader Anna Sapundzhieva.

You can find out more about the project on the ForestPath website: forestpaths.eu. Stay up to date with the project’s progress on Twitter (@forestpaths_eu) and LinkedIn (/forestpaths-project).

Full list of project partners:
  1. European Forest Institute
  2. Lund University
  3. Technical University of Munich
  4. Karlsruhe Institute of Technology
  5. Natural Resources Institute Finland
  6. Wageningen Research
  7. Flemish Institute for Technological Research
  8. PBL Netherlands Environmental Assessment Agency
  9. Oeko-Institut
  10. Euro-Mediterranean Center on Climate Change
  11. Prospex Institute
  12. Transilvania University of Brasov
  13. Pensoft Publishers
  14. Joint Research Centre – European Commission
  15. University of Edinburgh
  16. Teesside University

North American turtles establish succcessful populations in Germany, possibly threathening ecosystems

For the first time, self-sustaining populations of three non-native species of turtles were identified in south-western Germany by researchers at the University of Freiburg

For the first time, self-sustaining populations of three non-native species of turtles were identified in south-western Germany by researchers at the University of Freiburg

Original text published by the University of Freiburg


Three species of turtles native to North America have been successfully reproducing in the wild in Germany, report for the first time environmental researcher Benno Tietz and biologist Dr. Johannes Penner of the University of Freiburg, along with Dr. Melita Vamberger of the Senckenberg Natural History Collection in Dresden.

Their results were published in the open-access scientific journal NeoBiota.

The scientists examined a total of nearly 200 animals living in the wild in lakes in Freiburg and Kehl. Their findings suggest that the turtles have established themselves in a new habitat, where they could become a threat to the local ecosystem.

For two species, this is the first evidence of independent reproduction outside of their natural reproductive range. For the third species, this is the northernmost evidence of its presence up to now,

says Penner.
The false map turtle (Graptemys pseudogeographica) enjoys the sun’s warmth. Photo: Johannes Penner.

Turtles released into the wild

Invasive species do a great deal of economic damage world-wide. They also contribute to advancing global species extinctions.

Alien reptiles regularly make their way into the wild in Germany. Most often, this is because they have been released by pet owners.

Large numbers of North American pond sliders (Trachemys scripta) were imported into the European Union (EU) in the 1980s and 1990s as house pets. In 1997, their import into the EU was banned. By 2016, the sale of specimens born here was also made illegal.  Since then, pet shops have replaced them with other freshwater turtles, such as the river cooter (Pseudemys concinna) and the false map turtle (Graptemys pseudogeographica).

Genetic analyses of specimens of all three species in a range of ages have now demonstrated that they are reproducing independently in local waters. 

What’s surprising is that the invasive species have established themselves so far north. In Europe, successful reproduction and self-maintaining populations of Trachemys scripta were only known in the Mediterranean regions and the continental climate zone of Slovenia,

explains Benno Tietz.

Until recently, it had been assumed the turtles being examined couldn’t reproduce in Central Europe due to the colder climate. Especially the false map turtle is actually quite sensitive to the cold,

he says.
A North American pond slider (Trachemys scripta) resting on a lily pad. Photo: Johannes Penner.

Consequences for local species unclear

The invasive turtles could become a problem for indigenous species.

The European pond turtle (Emys orbicularis), for example, is now only present in Germany in parts of Brandenburg.

In an experimental setup, the European pond turtle showed weight loss and an increased death rate when being kept together with Trachemys scripta,

reports Penner.

Penner says that could be caused by the larger, alien species forcing the smaller local turtles from places where they sun themselves, leading the local turtles to have  problems with thermoregulation. Or perhaps the competition led to them having greater challenges when seeking food. 

Beyond that, aquatic turtles could be hosts for viruses and parasites, leading them to play a role in the spread of diseases. This could potentially have a damaging influence on other parts of the ecosystem, including amphibians, fish, or aquatic plants.

On the other hand, in their study, the researchers consider the alien species could assume functions in damaged ecosystems that would otherwise go unreplaced.

Vamberger says these questions urgently need to be explored further.

We need to raise public awareness that people should not release – no matter what kind of species – any animals into the wild in future.”

she insists.
A river cooter (Pseudemys concinna) lets itself drift in the water. Photo: Johannes Penner.
Meet the research team:

Dr. Johannes Penner was the scientific coordinator of the research training group “Conservation of Forest Biodiversity in Multiple-Use Landscapes of Central Europe” (ConFoBi) and a lecturer for the Chair of Wildlife Ecology and Management of the University of Freiburg. Currently, he is a curator at the NGO “Frogs and Friends” and a guest researcher in wild animal ecology.

Benno Tietz has completed a Master’s degree in Environmental Sciences at the University of Freiburg. His thesis – finished in the Winter Semester of 2020/2021 – investigated alien turtles. Currently, he is a research assistant at the Freiburg Institute of Applied Animal Ecology.

Dr. Melita Vamberger is a researcher at the Senckenberg Natural History Collection in Dresden.

***

The study was supported by the Hans Schimenz Fund of the German Society for Herpetology and Terrarium Science (DGHT) as well as the Academic Society of Freiburg.

***

Research paper:

Tietz B, Penner J, Vamberger M (2023) Chelonian challenge: three alien species from North America are moving their reproductive boundaries in Central Europe. NeoBiota 82: 1-21. https://doi.org/10.3897/neobiota.82.87264


Follow NeoBiota on Twitter and Facebook.

Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Where did all those insects come from? Tracking the history of insect invasion in Chile

Going through centuries-old literature, researchers compiled a database of the exotic insects established in the country.

Guest blog post by Daniela N. López, Eduardo Fuentes-Contreras, Cecilia Ruiz, Sandra Ide, Sergio A. Estay

Understanding the history of non-native species arrivals to a country can shed light on the origins, pathways of introduction, and the current and future impacts of these species in a new territory. In this sense, collecting this information is important, and sometimes essential, for researchers and decision makers. However, in most cases, reconstructing this history takes a lot of work. Finding antique references is hard work. To add more complexities, changes in the taxonomy of species or groups could be frustrating as we try to track the moment when a species was referenced in the country for the first time, sometimes centuries ago. Of course, we only learned about these issues when, almost seven years ago, we thought that compiling a database for the exotic insects established in Chile would be interesting to people working on invasive species in the country.

Tremex fuscicornis caught in Chile. Photo by Sergio Estay

First, we collected information from physical and electronic books and journals available in our institutional libraries, but soon we noticed that we needed a more significant effort. In Chile, the National Library and The National Congress library allowed us to review and collect information from texts, in many cases, over a hundred years old. We also had to request information from foreign specialized libraries and bookstores. Sometimes, we had to negotiate with private collectors to buy antique books or documents. When we figured the first version of the database was ready, we began a second step for detecting errors, correcting the taxonomy, and completing the information about the reported species.

Ctenarytaina eucalypti individuals and damage in Chile. Photo by Sergio Estay

The analysis began when we finally completed the database. What types of questions could we answer using this data? Was the database complete enough to detect historical, biogeographic, and ecological patterns? Two competing hypotheses were the starting point for the study at this stage. On the one hand, the species that dominated the non-native insect assemblage could have come from original environmental conditions that matched Chile’s. Or, the pool of non-native insects arrived using pathways associated with the country’s economic activities, regardless of their origin.

We found records of almost 600 non-native insect species established in continental Chile. Most species corresponded to Hemiptera (true bugs and scales, among others) from Palaearctic origin and were linked to agriculture and forestry, as we initially hypothesized. These characteristics point to the central role of intercontinental human-mediated transport in structuring non-native insect assemblages in Chile. Non-native insect introductions began immediately after the arrival of Europeans to the central valley of Chile and have shown an enormous acceleration since 1950. Using data on the economic history of Chile, we can preliminary link this acceleration with the strong development in agriculture and forestry in Chile after World War II and the increase in intercontinental air traffic.

Exotic aphids in garden in Chile. Photo by Sergio Estay

The development and analysis of this database gave us some preliminary answers about the ecology of invasive insect species and opened the door to new questions. Also, this is a work in progress. We need the scientific community’s support to improve and correct the records, provide new reports and collect further references to support the database. Our data and analysis may be representative of other countries in South America. Similarities between our countries can facilitate using this information to manage recent introductions and prevent significant economic, social, or environmental damage.

Reference

López DN, Fuentes-Contreras E, Ruiz C, Ide S, Estay SA (2023) A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81: 183-197. https://doi.org/10.3897/neobiota.81.87362