‘Who is in your database and why does it matter?’

The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed. 

Collection discovery through disambiguation

Guest blog post by Sabine von Mering, Heather Rogers, Siobhan Leachman, David P. ShorthouseDeborah Paul & Quentin Groom

Worldwide, natural history institutions house billions of physical objects in their collections, they create and maintain data about these items, and they share their data with aggregators such as the Global Biodiversity Information Facility (GBIF), the Integrated Digitized Biocollections (iDigBio), the Atlas of Living Australia (ALA), Genbank and the European Nucleotide Archive (ENA). 

Even though these data often include the names of the people who collected or identified each object, such statements may be ambiguous, as the names frequently lack any globally unique, machine-readable concept of their shared identity.

Despite the data being available online, barriers exist to effectively use the information about who collects or provides the expertise to identify the collection objects. People have similar names, change their name over the course of their lifetime (e.g. through marriage), or there may be variability introduced through the label transcription process itself (e.g. local look-up lists). 

As a result, researchers and collections staff often spend a lot of time deducing who is the person or people behind unknown collector strings while collating or tidying natural history data. The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed. 

Disambiguation activities: the act of churning strings into verifiable things using all available evidence – need not be done in isolation. In addition to presenting a workflow on how to disambiguate people in collections, we also make the case that working in collaboration with colleagues and the general public presents new opportunities and introduces new efficiencies. There is tacit knowledge everywhere.

More often than not, data about people involved in biodiversity research are scattered across different digital platforms. However, with linking information sources to each other by using person identifiers, we can better trace the connections in these networks, so that we can weave a more interoperable narrative about every actor.

That said, inconsistent naming conventions or lack of adequate accreditation often frustrate the realization of this vision. This sliver of natural history could be churned to gold with modest improvements in long-term funding for human resources, adjustments to digital infrastructure, space for the physical objects themselves alongside their associated documents, and sufficient training on how to disambiguate people’s names.

“He aha te mea nui o te ao. He tāngata, he tāngata, he tāngata.

“What is the most important thing in the world? It is people, it is people, it is people.”

(Māori proverb)

The process of properly disambiguating those who have contributed to natural history collections takes time. 

The disambiguation process involves the extra challenge of trying to deduce “who is who” for legacy data, compared to undertaking this activity for people alive today. Retrospective disambiguation can require considerable detective work, especially for scarcely known people or if the community has a different naming convention. Provided the results of this effort are well-communicated and openly shared, mercifully, it need only be done once.

At the core of our research is the question of how to solve the issue of assigning proper credit

In our recent Methods paper, we discuss several methods for this, as well as available routes for making records available online that include not only the names of people expressed as text, but additionally twinned with their unique, resolvable identifiers. 

Disambiguation is a cycle. Enrichment of the data feeds off itself leading to further disambiguation. As more names are disambiguated and more biographical data are accumulated, it becomes easier to disambiguate more names. 

First and foremost, we should maintain our own public biographical data by making full use of ORCID. In addition to preserving our own scientific legacy and that of the institutions that employ us, we have a responsibility to avoid generating unnecessary disambiguation work for others. 

For legacy data, where the people connected to the collections are deceased, Wikidata can be used to openly document rich bibliographic and demographic data, each statement with one or more verifiable references. Wikidata can also act as a bridge to link other sources of authority such as VIAF or ORCID identifiers. It has many tools and services to bulk import, export, and to query information, making it well-suited as a universal democratiser of information about people often walled-off in collection management systems (CMS). 

A network of the top twenty most used identifiers for biologists on Wikidata.

Once unique identifiers for people are integrated in collection management systems, these may be shared with the global collections and research community using the new Darwin Core terms, recordedByID or identifiedByID along with the well-known, yet text-based terms, recordedBy or identifiedBy. 

Approximately 120 datasets published through GBIF now make use of these identifier-based terms, which are additionally resolved in Bionomia every few weeks alongside co-curated attributions newly made there. This roundtrip of data – emerging as ambiguous strings of text from the source, affixed with resolvable identifiers elsewhere, absorbed into the source as new digital annotations, and then re-emerging with these fresh, identifier-based enhancements – is an exciting approach to co-manage collections data.

Round tripping. In Bionomia, people identifiers from Wikidata and ORCID are used to enrich data published via GBIF, thus linking natural history specimens to the world’s collectors.

Disambiguation work is particularly important in recognising contributors who have been historically marginalized. For example, gender bias in specimen data can be seen in the case of Wilmatte Porter Cockerell, a prolific collector of botanical, entomological and fossil specimens. Cockerell’s collections are often attributed to her husband as he was also a prolific collector and the two frequently collected together. 

On some labels, her identity is further obscured as she is simply recorded as “& wife” (see example on GBIF). Since Wilmatte Cockerell was her husband’s second wife, it can take some effort to confirm if a specimen can be attributed to her and not her husband’s first wife, who was also involved in collecting specimens. By ensuring that Cockerell is disambiguated and her contributions are appropriately attributed, the impact of her work becomes more visible enabling her work to be properly and fairly credited.

Thus, disambiguation work helps to not only give credit where credit is due, thereby making data about people and their biodiversity collections more findable, but it also creates an inclusive and representative narrative of the landscape of people involved with scientific knowledge creation, identification, and preservation. 

A future – once thought to be a dream – where the complete scientific output of a person is connected as Linked Open Data (LOD) is now

Both the tools and infrastructure are at our disposal and the demand is palpable. All institutions can contribute to this movement by sharing data that include unique identifiers for the people in their collections. We recommend that institutions develop a strategy, perhaps starting with employees and curatorial staff, people of local significance, or those who have been marginalized, and to additionally capitalize on existing disambiguation activities elsewhere. This will have local utility and will make a significant, long-term impact. 

The more we participate in these activities, the greater chance we will uncover positive feedback loops, which will act to lighten the workload for all involved, including our future selves!

The disambiguation of people in collections is an ongoing process, but it becomes easier with practice. We also encourage collections staff to consider modifying their existing workflows and policies to include identifiers for people at the outset, when new data are generated or when new specimens are acquired. 

There is more work required at the global level to define, update, and ratify standards and best practices to help accelerate data exchange or roundtrips of this information; there is room for all contributions. Thankfully, there is a diverse, welcoming, energetic, and international community involved in these activities. 

We see a bright future for you, our collections, and our research products – well within reach – when the identities of people play a pivotal role in the construction of a knowledge graph of life.

You would like to participate and need support getting disambiguation of your collection started? Please contact our TDWG People in Biodiversity Data Task Group.

A good start is also to check Bionomia to find out what metrics exist now for your institution or collection and affiliated people.

The next steps for collections: 7 objectives that can help to disambiguate your institutions’ collection:

1. Promote the use of person identifiers in local, national or international outreach, publishing and research activities

2. Increase the number of collection management systems that use person identifiers

3. Increase the number of living collectors registered and using an ORCID identifier when contributing to collections

4. Undertake disambiguation in the national languages of many countries

5. Increase the number of identified people on Wikidata linked to collections

6. Increase the number of people in collections with expertise in person disambiguation

7. Collaborate towards an exchange standard for attribution data

A real example of how a name string is disambiguated and the steps taken in documenting it. Wikidata item of Jean-André Soulié

***

Methods publication:

Groom Q, Bräuchler C, Cubey RWN, Dillen M, Huybrechts P, Kearney N, Klazenga N, Leachman S, Paul DL, Rogers H, Santos J, Shorthouse DP, Vaughan A, von Mering S, Haston EM (2022) The disambiguation of people names in biological collections. Biodiversity Data Journal 10: e86089. https://doi.org/10.3897/BDJ.10.e86089

***

Follow Biodiversity Data Journal on Twitter and Facebook.

High-schoolers join scholars to lift the lid on Hong Kong’s soil biodiversity

Most often, the students would find millipedes. They even helped identify two species that are new to Hong Kong’s fauna.

Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.

To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.

“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”

– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.

The soil sampling methodology that the students employed in this study.
Video by Sheung Yee Lai, Ka Wai Ting, Tze Kiu Chong and Wai Lok So.

Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.

Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.

Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.

Two polyxenid millipede species, collected in this study, turned out to had never before been recorded from Hong Kong.
Left: Monographis queenslandica and Alloproctoides remyi (right).
Image by Sheung Yee Lai, Ka Wai Ting and Wai Lok So.

Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.

“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”

the researchers write in their paper.

Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.

Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.

So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.

This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.

It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.” 

The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.

***

Research article:

So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518

***

Follow Biodiversity Data Journal on Twitter and Facebook.

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

Lizards go north: Balkan wall lizard population found all the way in the Czech Republic

The northernmost population of the Balkan lizard, recently discovered in the Czech Republic, has proven to be genetically unique and variable.

The Czech Republic is a zoologically well-studied area, and its reptile fauna is not very rich. Therefore, the recent discovery of a new reptile species for the country, the Balkan wall lizard (Podarcis tauricus), came as a big surprise. This lizard inhabits areas of the Central and Western Balkans as far as Crimea, with isolated areas of occurrence in Hungary and northern Romania, so how did it get as far north as the Czech Republic? Fortunately, the genetics in much of the lizard’s range are relatively well-studied. Finding out where lizards from the Czech Republic fit genetically could reveal the origins of this northernmost population.

Podarcis tauricus in the wild – Váté písky near Bzenec, Czech Republic.

An analysis published by Czech herpetologists in the journal Biodiversity Data Journal shows that the lizards from the Czech population are genetically variable; therefore, the population was not established by the introduction of a single gravid female.

Geographical distribution of Podarcis tauricus. The green arrow shows the northernmost known locality (Váté písky, Czech Republic).

The population also has genetic “markers” not yet found elsewhere, although it is clearly related to populations from the Central and Western Balkans and Hungary. These findings suggest that this could be an original, possibly relict population.

Haplotype network, designed from 24 haplotypes of the cytb locus from 167 individuals of Podarcis tauricus and Podarcis gaigeae (Psonis et al. 2017; this study). Colours correspond to the country of the specimen’s geographical origin and each circle corresponds to a haplotype. The circle size is proportional to the number of individuals with the same haplotype. The number of individuals per haplotype is indicated. Due to the unequal size of cytb sequences from Psonis et al. (2017), only a fragment of 257 bp which was common for all 167 sequences was used for the haplotype network reconstruction. For this region of cytb locus, the sequences of our individuals from Czech Republic are identical to 18 individuals from Albania, Hungary, Kosovo and Serbia.

However, we cannot rule out recent introductions or spontaneous northward dispersal of the lizard associated with global climate change. Exotic species of animals and plants appear in the Czech Republic through various routes and tracing their origin is not always easy. Both intentional and unintentional introductions have been recorded for some reptiles, while some previously southern vertebrate and invertebrate species spread to the north spontaneously.

The first genetic data on the origin of the northernmost population of the Balkan wall lizard suggest that the lizard can spread to the north naturally; however, further investigations are needed to support this tentative conclusion. 

Research article:

Rehák I, Fischer D, Kratochvíl L, Rovatsos M (2022) Origin and haplotype diversity of the northernmost population of Podarcis tauricus (Squamata, Lacertidae): Do lizards respond to climate change and go north? Biodiversity Data Journal 10: e82156. https://doi.org/10.3897/BDJ.10.e82156

Citizen scientists from three continents help discover a new, giant slug from Europe

The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

You might think that Europe is so well studied that no large animals remain undiscovered. Yet today, a new species of giant keelback slug from Montenegro was announced in the open-access Biodiversity Data Journal. The animal, as big as a medium-sized carrot, was discovered on a citizen-science expedition and jointly described by its participants.

A living specimen of Limax pseudocinereoniger on a researcher’s hand.

The international team of citizen scientists from Italy, the Netherlands, Serbia, South Africa, and the United States found the slug in July 2019 while exploring the spectacular Tara Canyon, Europe’s deepest gorge, on inflatable rafts. The brownish-grey animals, with a sharp ridge along the back, and 20 cm in length when fully stretched, were hiding under rocky overhangs in the narrowest part of the ravine.

A living specimen of Limax pseudocinereoniger seen from the side. Photo by Pierre Escoubas

At first, the newly discovered slugs seemed superficially indistinguishable from the ash-black keelback slug (Limax cinereoniger), which also lives in the Tara Canyon. The team had to use a portable DNA lab to work out that there is a 10% difference between the two slugs in the so-called DNA barcode. Moreover, when they dissected a few of them, they found differences in the reproductive organs as well. This was enough to decide that a new species had been discovered, and they named it Limax pseudocinereoniger to indicate its similarity to L. cinereoniger.

The field trip was run by Taxon Expeditions, which organises real scientific expeditions for the general public, with the aim to make scientific discoveries. Rick de Vries, a web editor and illustrator from Amsterdam who found the first specimen of L. pseudocinereoniger, says: “It’s an incredible thrill to hold an animal in your hands and to know that it is still unknown to science”.

Citizen scientists studying specimens in the team’s field lab in Montenegro.

Zoologist Iva Njunjić, one of the authors of the paper, thinks that more unknown species are likely to be found in Tara Canyon and the Durmitor National Park, of which it is part. “Using a combination of DNA analysis and anatomy will probably reveal more species that are identical on the outside but actually belong to different species,” she says.

In 2023, Taxon Expeditions plans to take a new team of citizen scientists to Montenegro with a mission to discover new species and document the hidden biodiversity.

Taxon Expeditions was founded by Iva Njunjić and Menno Schilthuizen of Naturalis Biodiversity Center and specialises in ‘taxonomy tourism’ trips in Brunei, Italy, Montenegro, Panama, and the Netherlands.

Original source:

Schilthuizen M, Thompson CG, de Vries R, van Peursen ADP, Paterno M, Maestri S, Marcolongo L, Esposti CD, Delledonne M, Njunjić I (2022) A new giant keelback slug of the genus Limax from the Balkans, described by citizen scientists. Biodiversity Data Journal 10: e69685. https://doi.org/10.3897/BDJ.10.e69685

Endemic frogs in Himalayan region exhibit site fidelity

The Murree Hills Frog and Hazara Torrent Frog show minimum movement out of their habitat, which makes them more unique from an ecology and conservation perspective

Amongst tetrapods, amphibians entail the highest number of threatened and data deficient species, which has put them in the limelight of research in animal ecology and conservation. Endemic species have evolved and adapted to a particular set of environmental conditions. Hence, these are more vulnerable to environmental changes and are susceptible to population declines because of their restricted distribution ranges.

Murree Hills Frog (Nanorana vicina). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

The Murree Hills Frog and Hazara Torrent Frog are endemic to Pakistan and South Asian countries. They are associated with the torrential streams and nearby clear water pools situated at high elevation. These frogs are susceptible to threats like habitat degradation, urbanization, and climate change. A recent study published in the-open access journal Biodiversity Data Journal reports that these endemic frogs do not show much movement within and outside their habitat.

Hazara Torrent Frog (Allopaa hazarensis). Photo by Herpetology Lab, Arid Agriculture University, Rawalpindi

“We have, for the first time, used radio-transmitters (VHF) on frogs endemic to Himalayan region to understand their ecology,” explains Dr. Muhammad Rais, Assistant Professor at the Herpetology Lab in the Arid Agriculture University, Rawalpindi, and lead author of the study. “Surprisingly, the Murree Hills Frog and Hazara Torrent Frog depend heavily for their survival on particular stream(s).”

“We suggest carrying out additional long term studies by incorporating multiple adjacent stream systems to better understand dispersal and colonization in these frogs,” he says in conclusion.

Research article:

Akram A, Rais M, Saeed M, Ahmed W, Gill S, Haider J (2022) Movement Paradigm for Hazara Torrent Frog Allopaa hazarensis and Murree Hills Frog Nanorana vicina (Anura: Dicroglossidae). Biodiversity Data Journal 10: e84365. https://doi.org/10.3897/BDJ.10.e84365

African Bat Species “Lost” for 40 Years was rediscovered

Hill’s horseshoe bat, a critically endangered ‘lost species’, had not been seen in forty years until the day-and-night expedition to Nyungwe National Park (Rwanda), led by Bat Conservation International.

After 40 years, Hill’s horseshoe bat has been rediscovered by a team of conservationists.
Credit: Jon Flanders, Bat Conservation International

Originally published by Bat Conservation International.

A multi-national team of experts led by Bat Conservation International (BCI), Rwanda Development Board (RDB), and the Rwanda Wildlife Conservation Association (RWCA) has rediscovered Hill’s horseshoe bat (Rhinolophus hilli), a critically endangered ‘lost species’ not seen in forty years. To support wider efforts to understand and protect imperiled bats, BCI has published records of the rediscovery in their first dataset shared openly through the Global Biodiversity Information Facility (GBIF).

“Going into this project we feared the species may have already gone extinct. Rediscovering Hill’s horseshoe bat was incredible – it’s astonishing to think that we’re the first people to see this bat in so long. Now our real work begins to figure out how to protect this species long into the future.”

said Dr. Jon Flanders, BCI’s Director of Endangered Species Interventions

The rediscovery marked the culmination of survey efforts that started in 2013, as the team’s dedication paid off during a ten-day and night expedition to Nyungwe National Park in January 2019.

“We knew immediately that the bat we had captured was unusual and remarkable. The facial features were exaggerated to the point of comical. Horseshoe bats are easily distinguishable from other bats by characteristic horseshoe shape and specialized skin flaps on their noses,”

recalled Dr. Winifred Frick, BCI’s Chief Scientist.
Bat Conservation International and collaborators working through taxonomic keys to determine whether they had just caught Hill’s horseshoe bat in Nyungwe National Park.
Credit: Jon Flanders, Bat Conservation International

Careful measurements of the bat before they released it back into the wild were an early tip-off that this could be the lost species they came to find. Dr. Flanders then traveled to visit museum archives in Europe to compare the only known specimens to verify that what they had captured in the African forest was, in fact, the first evidence in 40 years that Hill’s horseshoe bat still exists. 

Catching this elusive species also allowed the team to collect additional information to ensure it is easier to find in the future – including recording the first-ever echolocation calls that Hill’s horseshoe bat emits as it hunts for insects.

“Knowing the echolocation calls for this species is a game-changer,”

said Dr. Paul Webala, Senior Lecturer at Maasai Mara University, and one of the team’s lead scientists.
Bat Conservation International and collaborators capture the first-ever recording of Hill’s horseshoe bat.
Credit: Winifred Frick, Bat Conservation International

Since catching the pair of Hill’s horseshoe bats, the Nyungwe Park Rangers have been setting out detectors that ‘eavesdrop’ on the bats during their nightly flights through the forest.

The rangers conducted audio surveys with Wildlife Acoustics bat detectors in 23 locations over nine months resulting in recording a quarter-million sound files. Analysis of the sound files revealed Hill’s horseshoe bats were heard at eight locations, all within a small area.

“All the work so far confirms that this is a very rare species with a very small core range. We look forward to collaborating with the Rwanda Development Board and Nyungwe Management Company to strengthen the existing conservation efforts to ensure it stays protected,”

said Dr. Frick.
Team members work together to review acoustic data collected in the field.
Credit: Winifred Frick, Bat Conservation International

Careful planning and strong partnership support between all the agencies, organizations and experts involved in this initiative were key to its success, according to Dr. Olivier Nsengimana, founder and executive director of the Rwanda Wildlife Conservation Association. 

Records from the 2019 survey and the rest of the nine-year project’s field work are included in a dataset openly available through GBIF. Other notable highlights include the first record of Lander’s horseshoe bat (Rhinolophus landeri) in Nyungwe and the first known occurrences of the Damara woolly bat (Kerivoula argentata) in Rwanda.

The research team has released the dataset alongside a preprint describing the findings and survey methods currently in review with Biodiversity Data Journal. Sharing such data, even for such a rare species, allows the international scientific community to put it to use immediately and aid conservation and research aimed at documenting and protecting African bat diversity.

“Nyungwe National Park is one of the most biologically important montane rainforests in Central Africa, supporting an exceptional range of biodiversity including many rare and endemic species, including bats. These findings reinforce the importance of Rwanda’s committed stewardship of Nyungwe National Park as a global biodiversity hotspot and our conservation efforts, including implementing species management actions. We look forward to continuing this collaboration with BCI, RWCA, and the rest of our partners to find out more about the bat diversity in this incredible landscape,”

said Mr. Eugene Mutangana, the Conservation Management Expert, Rwanda Development Board.
Nyungwe National Park is the only location that Hill’s horseshoe bat has ever been detected.
Credit: Winifred Frick, Bat Conservation International

“Sharing the survey data to be accessible freely through GBIF is as important to bat conservation as the actual findings. These data belong to anyone and everyone working to ensure these species have protected forests to call home. Open data sharing ensures we live up to the promise that conservation benefits us all,”

said Dr. Frick.

***

Preprint citation:

Flanders J, Frick WF, Nziza J, Nsengimana O, Kaleme P, Dusabe MC, Ndikubwimana I, Twizeyimana I, Kibiwot S, Ntihemuka P, Cheng TL, Muvunyi R, Webala P (2022) Rediscovery of the critically endangered Hill’s horseshoe bat (Rhinolophus hilli) and other new records of bat species in Rwanda. ARPHA Preprints. https://doi.org/10.3897/arphapreprints.e83547

Rare, protected orchid thrives in a military base in Corsica

Counting over 155,000 individuals, the population is a world precedent. Globally, this orchid can only be found in the south of France, Italy, and along the east coast of the Adriatic.

In Corsica, away from the eyes of locals and tourists, hides a population of unprecedented proportions of a rare and protected orchid: the neglected Serapias (Serapiasneglecta). In a closed military base in the east of the island, researchers discovered 155,000 individuals of the plant.

Globally, this orchid can only be found in the south of France (including Corsica), Italy, and along the east coast of the Adriatic, but none of its known populations has been as abundant as the one documented in Solenzara.

High density of Serapias neglecta on the air base. Photo by Margaux Julien (Ecotonia)

Margaux Julien, Dr Bertrand Schatz, Simon Contant, and Gérard Filippi, researchers from the Center of Functional Ecology and Evolution (CEFE) and Ecotonia consultancy,came across this population while studying plant diversity in the Solenzara air base. Their research, published in Biodiversity Data Journal, documented impressive plant richness, including 12 other orchid species.

The maintenance of the closed military area turned out to be really favourable to the development of orchids. The flower was abundant around the edges of runways and on lawns near military buildings.

Serapias neglecta. Photo by Margaux Julien (Ecotonia)

“Мilitary bases are important areas for biodiversity because they are closed to the public, are not heavily impacted and these areas have soils that are often poorly fertilised and untreated due to old installations, so they often have high biodiversity,” the researchers say in their study.

The meadows around the airport are regularly mowed for security reasons, which allows orchids to thrive in a low vegetation environment with little competition. In addition, the history of the land with its position on the old Travo river bed favours low vegetation, providing rocky ground just a few centimetres beneath the soil.

“The case of S. neglecta is particularly remarkable, because this species benefits from a national protection status and it is a sub-endemic species with a very localised distribution worldwide,” the research team writes. Moreover, the species is classified as near threatened in the World and European Red Lists of the International Union for Conservation of Nature.

The Ecotonia consultancy also did several inventories on the air base, finding biodiversity of rare richness: 552 species of plants, including 19 with protected status in France. Within only 550 ha, they found 23% of the plant species distributed in Corsica. Among these are some very rare plants, as well as endangered species such as the gratiole (Gratiola officinalis) and Anthemis arvensis subsp. incrassate, a subspecies of the corn chamomile.

Serapias neglecta. Photo by Bertrand Schatz

The Solenzara military base hides rich floristic diversity thanks to its history, management, and the lack of public access. While the Corsican coastline is suffering from urbanisation, this sector is a testament to the local flora, featuring several species with conservation status.

The protection of this richness is crucial. “If logistical developments are carried out on this base, they will have to favour the conservation of this exceptional floristic biodiversity, and, in particular of this particularly abundant orchid. Military bases are a great opportunity for the conservation of species and would benefit from enhancing their natural heritage,” the researchers conclude.

Research article:

Julien M, Schatz B, Contant S, Filippi G (2022) Flora richness of a military area: discovery of a remarkable station of Serapias neglecta in Corsica. Biodiversity Data Journal 10: e76375. https://doi.org/10.3897/BDJ.10.e76375

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 2

While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.

Read Part 1 of the Top 10 new species of 2021 here.

5. The Instagram model

Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?

This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.

The picture immediately caught the attention of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and Harshil Patel (Veer Narmad South Gujarat University, Surat), who worked together with Virendar to describe it as a new species under the name Oligodon churahensis.

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

Published in: Evolutionary Systematics

4. The tiny snail with an athletic name

Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.

Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian ten­nis player Novak Djokovic.

Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.

The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.

To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.

Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.

“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”

Published in: Subterranean Biology

3. The Coronavirus caddisfly

The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.

Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.

P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its name will be an eternal memory of an extremely difficult period.

In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.

P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.

Published in: Biodiversity Data Journal

2. The cutest peacock spider ever

If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.

Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook. It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.

Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.

‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.

Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.

Published in: Evolutionary Systematics

1. The tiny ant that challenges gender stereotypes

Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of
Darmstadt
and Douglas Booher of Yale University state in their paper.

Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”

Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.

This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.

“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.

Published in: ZooKeys

The first Field Identification Guide of Seychelles’ deeper reefscapes

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

Guest blog post by Nico Fassbender, Zoleka Filander, Carlos Moura, Paris Stefanoudis and Lucy Woodall

 “We cannot protect something we do not love, we cannot love what we do not know, and we cannot know what we do not see.”

These compelling words by author Richard Louv perfectly describe the importance of taxonomy in today’s conservation efforts.

A fan coral of the genus Annella surrounded by various smaller fans and encrusting benthic organisms. Photograph taken at 60m depth. © Nekton.

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. 

More recently, the importance of deeper ecosystems started moving into the focus of modern marine research as many scientists across the globe are now working to unriddle the mysteries and processes that drive the patterns of life down in the deep.

Deeper reef habitats, starting at ~30m depth beyond SCUBA diving limits, are of crucial importance for coastal communities and adjacent ecosystems alike. They have been found to not only support coral and fish larval supply, aiding shallower reefs, but also to act as a refuge for many species in times of disturbance. Yet, going back to the start of this post – you cannot protect what you don’t know – and we currently know very little about these deeper reefs, especially ones in the Western Indian Ocean region.

We are many nations, but together we are one ocean.

Zoleka Filander – Department of Forestry, Fisheries and Environment, Branch Oceans and Coasts, Cape Town, South Africa

With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

All species play relevant roles in trophic relations, in the functioning of ecosystems, and all have a potential biotechnological interest.

Carlos Moura – OKEANOS/DOP, University of the Azores, Horta, Portugal
A grouper (Cephalopholis miniate) hovering above encrusting benthic communities at Aldabra, dominated by the scleractinian coral Pachyseris. Photograph taken at 30m depth. © Nekton.

Our Field Identification Guide is one of the first efforts to describe the mesophotic and sub-mesophotic reefs in the Western Indian Ocean. To effectively protect these ecosystems, stakeholders need to be able to visualise them and scientists need to be able to identify and classify the organisms they observe. Displaying the diversity of the benthic organisms we encountered is only the first step in a complex and long process, allowing us to categorize, study, monitor and thus effectively protect these habitats. 

The correct identification of life is a fundamental building block of ecological knowledge. This international collaboration provided an important place to start from when considering the life on deeper reefs in Seychelles and the wider Western Indian Ocean region.

Lucy Woodall – University of Oxford, and Nekton

To survey the benthic flora and fauna of the Seychelles, we used a variety of methods, including submersibles, remotely operated vehicles and SCUBA diving teams equipped with stereo-video camera systems. We then recorded benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. This way, we ended up with 45 h of video footage and enough images to be able to present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles’ reefs.

We encountered coral fan gardens on steep slopes, boulders entirely encrusted with sponges of all colours and textures, corals of all shapes and sizes, and an amazing variety of critters. The images in our guide cannot do justice to the beauty of these habitats, and more than one tear was shed encountering these intact ecosystems teeming with life. Especially in times of increasingly frequent disturbance events and quickly shifting baselines (i.e., what we would see as a pristine, healthy reef in the 21st century), intact reef systems become increasingly rare. So much so that they are often confined to extremely remote and/or long and heavily protected areas. Finding these deeper reefs intact and with little to no signs of anthropogenic disturbance means hope – hope that there are yet undiscovered and unexplored reefs in the Western Indian Ocean region that show similar traits; and hope that we will discover even more novel habitats worth protecting.

An overview of how habitat composition changes across depths at Astove Island. © Nekton.

We hope that this guide will help the public to discover the beauty of Seychelles’ deeper reefs and aid current and future monitoring and research activities in Seychelles and the Western Indian Ocean region.

Currently, there are few formalised training materials available to new marine researchers working in mesophotic and deeper reef habitats, especially for the Indian Ocean. The present benthic field ID guide will hopefully be of use to marine researchers, managers, divers and naturalists with the identification of organisms as seen in marine imagery or live in the field.

Paris Stefanoudis – University of Oxford, and Nekton

Taxonomic paper:

Fassbender N, Stefanoudis PV, Filander ZN, Gendron G, Mah CL, Mattio L, Mortimer JA, Moura CJ, Samaai T, Samimi-Namin K, Wagner D, Walton R, Woodall LC (2021) Reef benthos of Seychelles – A field guide. Biodiversity Data Journal 9: e65970. https://doi.org/10.3897/BDJ.9.e65970