Rare, protected orchid thrives in a military base in Corsica

Counting over 155,000 individuals, the population is a world precedent. Globally, this orchid can only be found in the south of France, Italy, and along the east coast of the Adriatic.

In Corsica, away from the eyes of locals and tourists, hides a population of unprecedented proportions of a rare and protected orchid: the neglected Serapias (Serapiasneglecta). In a closed military base in the east of the island, researchers discovered 155,000 individuals of the plant.

Globally, this orchid can only be found in the south of France (including Corsica), Italy, and along the east coast of the Adriatic, but none of its known populations has been as abundant as the one documented in Solenzara.

High density of Serapias neglecta on the air base. Photo by Margaux Julien (Ecotonia)

Margaux Julien, Dr Bertrand Schatz, Simon Contant, and Gérard Filippi, researchers from the Center of Functional Ecology and Evolution (CEFE) and Ecotonia consultancy,came across this population while studying plant diversity in the Solenzara air base. Their research, published in Biodiversity Data Journal, documented impressive plant richness, including 12 other orchid species.

The maintenance of the closed military area turned out to be really favourable to the development of orchids. The flower was abundant around the edges of runways and on lawns near military buildings.

Serapias neglecta. Photo by Margaux Julien (Ecotonia)

“Мilitary bases are important areas for biodiversity because they are closed to the public, are not heavily impacted and these areas have soils that are often poorly fertilised and untreated due to old installations, so they often have high biodiversity,” the researchers say in their study.

The meadows around the airport are regularly mowed for security reasons, which allows orchids to thrive in a low vegetation environment with little competition. In addition, the history of the land with its position on the old Travo river bed favours low vegetation, providing rocky ground just a few centimetres beneath the soil.

“The case of S. neglecta is particularly remarkable, because this species benefits from a national protection status and it is a sub-endemic species with a very localised distribution worldwide,” the research team writes. Moreover, the species is classified as near threatened in the World and European Red Lists of the International Union for Conservation of Nature.

The Ecotonia consultancy also did several inventories on the air base, finding biodiversity of rare richness: 552 species of plants, including 19 with protected status in France. Within only 550 ha, they found 23% of the plant species distributed in Corsica. Among these are some very rare plants, as well as endangered species such as the gratiole (Gratiola officinalis) and Anthemis arvensis subsp. incrassate, a subspecies of the corn chamomile.

Serapias neglecta. Photo by Bertrand Schatz

The Solenzara military base hides rich floristic diversity thanks to its history, management, and the lack of public access. While the Corsican coastline is suffering from urbanisation, this sector is a testament to the local flora, featuring several species with conservation status.

The protection of this richness is crucial. “If logistical developments are carried out on this base, they will have to favour the conservation of this exceptional floristic biodiversity, and, in particular of this particularly abundant orchid. Military bases are a great opportunity for the conservation of species and would benefit from enhancing their natural heritage,” the researchers conclude.

Research article:

Julien M, Schatz B, Contant S, Filippi G (2022) Flora richness of a military area: discovery of a remarkable station of Serapias neglecta in Corsica. Biodiversity Data Journal 10: e76375. https://doi.org/10.3897/BDJ.10.e76375

A year of biodiversity: Top 10 new species of 2021 from Pensoft journals, Part 2

While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.

Read Part 1 of the Top 10 new species of 2021 here.

5. The Instagram model

Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?

This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.

The picture immediately caught the attention of Zeeshan A. Mirza (National Centre for Biological Sciences, Bangalore) and Harshil Patel (Veer Narmad South Gujarat University, Surat), who worked together with Virendar to describe it as a new species under the name Oligodon churahensis.

“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.

“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”

Published in: Evolutionary Systematics

4. The tiny snail with an athletic name

Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.

Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian ten­nis player Novak Djokovic.

Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.

The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.

To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.

Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.

“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”

Published in: Subterranean Biology

3. The Coronavirus caddisfly

The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.

Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.

P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its name will be an eternal memory of an extremely difficult period.

In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.

P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.

Published in: Biodiversity Data Journal

2. The cutest peacock spider ever

If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.

Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook. It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.

Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.

‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.

Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.

Published in: Evolutionary Systematics

1. The tiny ant that challenges gender stereotypes

Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.

“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of
Darmstadt
and Douglas Booher of Yale University state in their paper.

Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”

Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.

This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.

“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.

Published in: ZooKeys

The first Field Identification Guide of Seychelles’ deeper reefscapes

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

Guest blog post by Nico Fassbender, Zoleka Filander, Carlos Moura, Paris Stefanoudis and Lucy Woodall

 “We cannot protect something we do not love, we cannot love what we do not know, and we cannot know what we do not see.”

These compelling words by author Richard Louv perfectly describe the importance of taxonomy in today’s conservation efforts.

A fan coral of the genus Annella surrounded by various smaller fans and encrusting benthic organisms. Photograph taken at 60m depth. © Nekton.

The deep ocean is the last frontier on our planet. It is home to creatures beyond our imagination and filled to the brim with life. Coastal communities have known the value of a healthy ocean for centuries, yet much of its life remains unknown, sitting beyond the reach of most research programs due to the hostility of its depth and vastness. 

More recently, the importance of deeper ecosystems started moving into the focus of modern marine research as many scientists across the globe are now working to unriddle the mysteries and processes that drive the patterns of life down in the deep.

Deeper reef habitats, starting at ~30m depth beyond SCUBA diving limits, are of crucial importance for coastal communities and adjacent ecosystems alike. They have been found to not only support coral and fish larval supply, aiding shallower reefs, but also to act as a refuge for many species in times of disturbance. Yet, going back to the start of this post – you cannot protect what you don’t know – and we currently know very little about these deeper reefs, especially ones in the Western Indian Ocean region.

We are many nations, but together we are one ocean.

Zoleka Filander – Department of Forestry, Fisheries and Environment, Branch Oceans and Coasts, Cape Town, South Africa

With current research and monitoring activities in the region mostly focussing on shallow reefs, our Field Identification Guide, published in the peer-reviewed, open-access Biodiversity Data Journal, aims to showcase the benthic organisms that inhabit the Seychelles’ deeper reefscapes. The research cruise that gathered the imagery data used to create the guide, Nekton’s “First Descent: Seychelles Expedition”, was the first of its kind to systematically survey deeper reefs in Seychelles waters, bringing to light previously little-known ecosystems and their inhabitants.

All species play relevant roles in trophic relations, in the functioning of ecosystems, and all have a potential biotechnological interest.

Carlos Moura – OKEANOS/DOP, University of the Azores, Horta, Portugal
A grouper (Cephalopholis miniate) hovering above encrusting benthic communities at Aldabra, dominated by the scleractinian coral Pachyseris. Photograph taken at 30m depth. © Nekton.

Our Field Identification Guide is one of the first efforts to describe the mesophotic and sub-mesophotic reefs in the Western Indian Ocean. To effectively protect these ecosystems, stakeholders need to be able to visualise them and scientists need to be able to identify and classify the organisms they observe. Displaying the diversity of the benthic organisms we encountered is only the first step in a complex and long process, allowing us to categorize, study, monitor and thus effectively protect these habitats. 

The correct identification of life is a fundamental building block of ecological knowledge. This international collaboration provided an important place to start from when considering the life on deeper reefs in Seychelles and the wider Western Indian Ocean region.

Lucy Woodall – University of Oxford, and Nekton

To survey the benthic flora and fauna of the Seychelles, we used a variety of methods, including submersibles, remotely operated vehicles and SCUBA diving teams equipped with stereo-video camera systems. We then recorded benthic communities during transect surveys conducted at 10 m, 30 m, 60 m, 120 m, 250 m and 350 m depths. This way, we ended up with 45 h of video footage and enough images to be able to present a photographic guide for the visual identification of the marine macrophytes, corals, sponges and other common invertebrates that inhabit Seychelles’ reefs.

We encountered coral fan gardens on steep slopes, boulders entirely encrusted with sponges of all colours and textures, corals of all shapes and sizes, and an amazing variety of critters. The images in our guide cannot do justice to the beauty of these habitats, and more than one tear was shed encountering these intact ecosystems teeming with life. Especially in times of increasingly frequent disturbance events and quickly shifting baselines (i.e., what we would see as a pristine, healthy reef in the 21st century), intact reef systems become increasingly rare. So much so that they are often confined to extremely remote and/or long and heavily protected areas. Finding these deeper reefs intact and with little to no signs of anthropogenic disturbance means hope – hope that there are yet undiscovered and unexplored reefs in the Western Indian Ocean region that show similar traits; and hope that we will discover even more novel habitats worth protecting.

An overview of how habitat composition changes across depths at Astove Island. © Nekton.

We hope that this guide will help the public to discover the beauty of Seychelles’ deeper reefs and aid current and future monitoring and research activities in Seychelles and the Western Indian Ocean region.

Currently, there are few formalised training materials available to new marine researchers working in mesophotic and deeper reef habitats, especially for the Indian Ocean. The present benthic field ID guide will hopefully be of use to marine researchers, managers, divers and naturalists with the identification of organisms as seen in marine imagery or live in the field.

Paris Stefanoudis – University of Oxford, and Nekton

Taxonomic paper:

Fassbender N, Stefanoudis PV, Filander ZN, Gendron G, Mah CL, Mattio L, Mortimer JA, Moura CJ, Samaai T, Samimi-Namin K, Wagner D, Walton R, Woodall LC (2021) Reef benthos of Seychelles – A field guide. Biodiversity Data Journal 9: e65970. https://doi.org/10.3897/BDJ.9.e65970

From an amateur nature video to a unique study on Antarctic jellyfish

Sometimes research emerges from the strangest turns of events. In this case, an online video created by an amateur videographer on life under the sea ice in McMurdo Sound, Antarctica, resulted in a unique taxonomic study on Antarctic jellyfish and an image-based training set for machine learning. This study was published in the open-access Biodiversity Data Journal.

Sometimes, scientific discoveries emerge from the strangest turns of events.

It all started in 2018, when Dr. Emiliano Cimoli, postdoctoral researcher at the University of Tasmania, joined a field campaign to McMurdo Sound in the Ross Sea, Antarctica – to study not jellyfish, but rather the algal communities that thrive beneath the ice. 

This crystal-like comb jelly species, Callianira cristata, has been reported for the first time in the Ross Sea by the team of researchers. Photo by Dr. Emiliano Cimoli

“These algae are like the plants of the under-ice world and are very important for the Antarctic food chain,” Dr. Cimoli says.  The research team he was part of focused on the development of new sensing technologies to monitor these algal communities (e.g. optical techniques and chemical microsensors).

“We usually have a nice large tent to be able to work and operate such instruments in the harsh Antarctic environment. The cool part is that inside this tent, we have a massive 2 x 2 m hole in the sea ice that allows us to deploy these instruments to the under-ice world.”

It’s kind of like a magic portal to another world filled with mysterious and wondrous jellyfish-like creatures that live down there.

Besides working as an engineer and remote sensing scientist, Dr. Cimoli is also a passionate amateur nature and wildlife photographer and videographer, and in his free time he decided to document all sightings of these creatures with his camera. The researcher used a combination of macro photography equipment and a set of light sources, along with underwater robots for filming underwater. 

This brownish-orange comb jelly of the genus Beroe is likely one of the five undescribed species characterized by the team of researchers. Photo by Dr. Emiliano Cimoli

“Finally, I ended up having a massive amount of jellyfish footage, did not know what to do with it, then lockdown hit and suddenly I found myself working on a trippy video composition of all these creatures,” he adds.

The value of his video was soon picked up by biologist Dr. Gerlien Verhaegen, postdoctoral researcher at the Japan Agency for Marine-Earth Science and Technology (JAMSTEC):

“When I came across Emiliano’s video, I was amazed by the image quality of his underwater footage. You could clearly distinguish some key morphological features.” Unlike hard-bodied animals, the fragile body of jellyfishes and comb jellies (i.e. “sea gooseberries”) are easily destroyed when sampled with nets, which is why photography and videography of specimens are crucial to describing them taxonomically.

“Life Beneath the Ice”, a short musical film about light and life beneath the Antarctic sea-ice by Dr. Emiliano Cimoli

The two postdocs soon joined forces to produce a collaborative study. 

“I think I underestimated the time needed to produce a jellyfish taxonomic paper,” laughs Dr. Verhaegen. “Most of the original descriptions of Antarctic jellies date back to the so-called Heroic Age of Antarctic Exploration in the early 20th century, and are written in English, French, and German. Furthermore, due to the high-water content of jellies, it is extremely difficult to fix and preserve them in formalin or ethanol. We therefore could not compare our specimens to physical specimens preserved in museums but had to rely on the century old descriptions and drawings. Luckily, we were in good hands with my project host, Dr. Dhugal Lindsay, senior scientist at JAMSTEC, a jellyfish taxonomist expert, and last author of our paper”.

Filming creatures in their natural environment can yield valuable information on their trophic interactions with other organisms. For example, this picture of a Diplulmaris antarctica jellyfish shows it feeds on comb jellies, with a Beroe present in its stomach, whereas numerous hyperiid amphipods (small parasitic crustaceans) are observed scattered around on the bell of the jellyfish. Photo by Dr. Emiliano Cimoli

Despite the small geographical and temporal scale of this study, which was published in the open-access Biodiversity Data Journal, a total of 12 species were reported, with two jellyfish and three comb jellies likely representing undescribed species.

Besides revealing new morphological traits for every species, including some behavior and trophic traits, this study was also the first to include a training image set for video annotation of Antarctic jellyfish through machine learning. 

“Machine learning is being applied to numerous fields nowadays, from voice recognition software and translation through to detection of typhoon formation,” comments Dr. Lindsay.

“In marine biology, annotating species from underwater videos can be both time-consuming and financially costly, with very few experts able to give names to the high diversity of species invariably encountered. Machine learning techniques could help solve these issues by enabling automatic first-pass annotation of videos. However, taxonomically accurate image-based datasets are needed to train these learning algorithms, and this study is a valuable first step.”

Watch the video “Life Beneath the Ice” by Dr. Emiliano Cimoli on YouTube and Vimeo.

Original source

Verhaegen, G., Cimoli, E., & Lindsay, D. J. (2021). Life beneath the ice: jellyfish and ctenophores from the Ross Sea, Antarctica, with an image- based training set for machine learning. Biodiversity Data Journal, 9, e69374. https://doi.org/10.3897/BDJ.9.e69374

48 years of Australian collecting trips in one data package

From 1973 to 2020, Australian zoologist Dr Robert Mesibov kept careful records of the “where” and “when” of his plant and invertebrate collecting trips. Now, he has made those valuable biodiversity data freely and easily accessible via the Zenodo open-data repository, so that future researchers can rely on this “authority file” when using museum specimens collected from those events in their own studies. The new dataset is described in the open-access, peer-reviewed Biodiversity Data Journal.

While checking museum records, Dr Robert Mesibov found there were occasional errors in the dates and places for specimens he had collected many years before. He was not surprised.

“It’s easy to make mistakes when entering data on a computer from paper specimen labels”, said Mesibov. “I also found specimen records that said I was the collector, but I know I wasn’t!”

One solution to this problem was what librarians and others have long called an “authority file”.

“It’s an authoritative reference, in this case with the correct details of where I collected and when”, he explained.

“I kept records of almost all my collecting trips from 1973 until I retired from field work in 2020. The earliest records were on paper, but I began storing the key details in digital form in the 1990s.”

The 48-year record has now been made publicly available via the Zenodo open-data repository after conversion to the Darwin Core data format, which is widely used for sharing biodiversity information. With this “authority file”, described in detail in the open-access, peer-reviewed Biodiversity Data Journal, future researchers will be able to rely on sound, interoperable and easy to access data, when using those museum specimens in their own studies, instead of repeating and further spreading unintentional errors.

“There are 3829 collecting events in the authority file”, said Mesibov, “from six Australian states and territories. For each collecting event there are geospatial and date details, plus notes on the collection.”

Mesibov hopes the authority file will be used by museums to correct errors in their catalogues.

“It should also save museums a fair bit of work in future”, he explained. “No need to transcribe details on specimen labels into digital form in a database, because the details are already in digital form in the authority file.”

Mesibov points out that in the 19th and 20th centuries, lists of collecting events were often included in the reports of major scientific expeditions.

“Those lists were authority files, but in the pre-digital days it was probably just as easy to copy collection data from specimen labels.”

“In the 21st century there’s a big push to digitise museum specimen collections”, he said. “Museum databases often have lookup tables with scientific names and the names of collectors. These lookup tables save data entry time and help to avoid errors in digitising.”

“Authority files for collecting events are the next logical step,” said Mesibov. “They can be used as lookup tables for all the important details of individual collections: where, when, by whom and how.”

###

Research paper:

Mesibov RE (2021) An Australian collector’s authority file, 1973–2020. Biodiversity Data Journal 9: e70463. https://doi.org/10.3897/BDJ.9.e70463

###

Robert Mesibov’s webpage: https://www.datafix.com.au/mesibov.html

Robert Mesibov’s ORCID page: https://orcid.org/0000-0003-3466-5038

The first Red List of Taxonomists in Europe is calling for the support of insect specialists

The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.

About 1,000 insect taxonomists – both professional and citizen scientists – from across the European region have already signed up on the Red List of Taxonomists, a recently launched European Commission-funded initiative by the Consortium of European Taxonomic Facilities (CETAF), the International Union for Conservation of Nature (IUCN) and the scholarly publisher best-known for its biodiversity-themed journals and high-tech innovations in biodiversity data publishing Pensoft.

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.

Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.

By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.

On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!

***

Read more about the rationale of the Red List of Taxonomists project.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Dolichomitus meii Wasp Discovered in Amazonia Is Like a Flying Jewel

“The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous.”

Parasitoid wasps (Hymenoptera) are one of the most species rich animal taxa on Earth, but their tropical diversity is still poorly known. Now, scientists have discovered the Dolichomitus meii and Polysphincta parasitoid wasp species previously unknown to science in South America. The new species found in the rainforests entice with their colours and exciting habits. Researchers at the University of Turku have already described 53 new animal species this year.

Researchers at the Biodiversity Unit of the University of Turku, Finland, study insect biodiversity particularly in Amazonia and Africa. In their studies, they have discovered hundreds of species previously unknown to science. Many of them are exciting in their size, appearance, or living habits.

“The species we have discovered show what magnificent surprises the Earth’s rainforests can contain. The newly discovered Dolichomitus meii wasp is particularly interesting for its large size and unique colouring. With a quick glance, its body looks black but glitters electric blue in light. Moreover, its wings are golden yellow. Therefore, you could say it’s like a flying jewel,” says Postdoctoral Researcher Diego Pádua from the Instituto Nacional de Pesquisas da Amazônia (INPA) in Brazil, who has also worked at the Biodiversity Unit of the University of Turku.

Dolichomitus parasitoid wasps are parasitic on insect larvae living deep in tree trunks. They lay a single egg on the insect larva and the wasp hatchling eats the host larva as it develops.  

Dolichomitus meii
The Dolichomitus meii wasp was discovered in western Amazonia. Its body looks black but glitters electric blue in light. The wasp lays its eggs on insect larvae living deep in wood. It reaches the host larvae with a long ovipositor. Picture: Filippo De Giovanni and Rodrigo Araújo

“The ovipositor of the Dolichomitus meii wasp is immensely long. It sticks the ovipositor into holes in the wood and tries to find host larvae inside. The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku.

Polysphincta Parasitoid Wasps Manipulate the Behaviour of the Host Spider

At the same time as the publication on the Dolichomitus meii species, the researchers published another research article on South American wasp species. The article describes altogether seven new wasp species belonging to the Polysphincta genus.

Polysphincta bonita refers to the species’ beautiful appearance. The species is parasitic on spiders. Picture: Diego Padúa and Ilari E. Sääksjärvi

The Polysphincta parasitoid wasps are parasitic on spiders. The female attacks a spider in its web and temporarily paralyses it with a venomous sting. After this, the wasp lays a single egg on the spider, and a larva hatches from the egg. The larva gradually consumes the spider and eventually pupates.

“The wasps that are parasitic on spiders are extremely interesting as many of them can manipulate the behaviour of the host spider. They can change the way a spider spins its web, so that before its death, the spider does not spin a normal web to catch prey. Instead, they spin a safe nest for the parasitoid wasp pupa,” describes Professor Sääksjärvi.

Researchers at University of Turku Have Already Discovered 53 New Species This Year

The new species are often discovered through extensive international collaboration. This was also the case with the newly published studies.

“For example, the discovery of the Dolichomitus meii species was an effort of six researchers. Moreover, these researchers all come from different countries,” says Professor Sääksjärvi.

The work to map out biodiversity previously unknown to science continues at the University of Turku and there are interesting species discoveries ahead.

“I just counted that, in 2021, the researchers of the Biodiversity Unit at the University of Turku have described already 53 new species from different parts of the globe – and we’re only halfway through the year,” Sääksjärvi announces cheerfully.

The discoveries of the research group were published in the Biodiversity Data Journal and ZooKeys.

Research articles:

Di Giovanni F, Pádua DG, Araujo RO, Santos AD, Sääksjärvi IE (2021) A striking new species of Dolichomitus Smith, 1877 (Hymenoptera: Ichneumonidae; Pimplinae) from South America. Biodiversity Data Journal 9: e67438. https://doi.org/10.3897/BDJ.9.e67438

Pádua DG, Sääksjärvi IE, Spasojevic T, Kaunisto KM, Monteiro RF, Oliveira ML (2021) A review of the spider-attacking Polysphincta dizardi species-group (Hymenoptera, Ichneumonidae, Pimplinae), with descriptions of seven new species from South America. ZooKeys 1041: 137-165. https://doi.org/10.3897/zookeys.1041.65407

The incredible return of Griffon Vulture to Bulgaria’s Eastern Balkan Mountains

Fifty years after presumably becoming extinct as a breeding species in Bulgaria, the Griffon Vulture, one of the largest birds of prey in Europe, is back in the Eastern Balkan Mountains. Since 2009, three local conservation NGOs – Green Balkans – Stara Zagora, the Fund for Wild Flora and Fauna and the Birds of Prey Protection Society, have been working on a long-term restoration programme to bring vultures back to their former breeding range in Bulgaria. The programme is supported by the Vulture Conservation Foundation, the Government of Extremadura, Spain, and EuroNatur. Its results have been described in the open-access, peer-reviewed Biodiversity Data Journal.

Griffon Vultures in Eastern Balkan Mountains. Photo by Hristo Peshev, fwff.org

Two large-scale projects funded by the EU’s LIFE tool, one of them ongoing, facilitate the import of captive-bred or recovered vultures from Spain, France and zoos and rehabilitation centres across Europe. Birds are then accommodated in special acclimatization aviaries, individually tagged and released into the wild from five release sites in Bulgaria. Using this method, a total of 153 Griffon Vultures were released between 2009 and 2020 from two adaptation aviaries in the Kotlenska Planina Special Protection Area and the Sinite Kamani Nature Park in the Eastern Balkan Mountains of Bulgaria.

Griffon Vultures in Eastern Balkan Mountains. Photo by Hristo Peshev, fwff.org

After some 50 years of absence, the very first successful reproduction in the area was reported as early as 2016. Now, as of December 2020, the local population consists of more than 80 permanently present individuals, among them about 25 breeding pairs, and has already produced a total of 31-33 chicks successfully fledged into the wild.

Vulture tagging. Photo by Hristo Peshev, fwff.org

“Why vultures of all creatures? Because they were exterminated, yet provide an amazing service for people and healthy ecosystems”, Elena Kmetova-Biro, initial project manager for the Green Balkans NGO explains.

Vulture tagging. Photo by Green Balkans, www.greenbalkans.org

“We have lost about a third of the vultures set free in that site, mostly due to electrocution shortly after release. The birds predominantly forage on feeding sites, where the team provides dead domestic animals collected from local owners and slaughterhouses,” the researchers say. 

Vulture tagging. Photo by Green Balkans, www.greenbalkans.org

“We, however, consider the establishment phase of the reintroduction of Griffon Vulture in this particular site as successfully completed. The population is still dependent on conservation measures (supplementary feeding, isolation of dangerous power lines and accidental poisoning prevention), but the area of the Eastern Balkan Mountains can currently be regarded as a one of the only seven existing general areas for the species in the mainland Balkan Peninsula and one of the five which serve as population source sites”.

Vulture adaptation aviary. Photo by Green Balkans, www.greenbalkans.org

Original source: Kmetova–Biro E, Stoynov E, Ivanov I, Peshev H, Marin S, Bonchev L, Stoev IP, Stoyanov G, Nikolova Z, Vangelova N, Parvanov D, Grozdanov A (2021) Re-introduction of Griffon Vulture (Gyps fulvus) in the Eastern Balkan Mountains, Bulgaria – completion of the establishment phase 2010-2020. Biodiversity Data Journal 9: e66363. https://doi.org/10.3897/BDJ.9.e66363

When conservation work pays off: After 20 years, the Saker Falcon breeds again in Bulgaria

The Saker Falcon (Falco cherrug) is a bird of prey living in plains and forest-steppes in the West and semi-desert montane plateaus and cliffs in the East. The majority of its Central and Eastern European population is migratory and spends winters in the Mediterranean, the Near East and East Africa. With its global population estimated at 6,100-14,900 breeding pairs, the species is considered endangered according to the IUCN Red List.

Saker falcon, Bulgaria

In Bulgaria, the Saker Falcon, considered extinct as a breeding species since the early 2000s, was recovered in 2018 with the discovery of the first active nest from its new history in Bulgaria. The nest is built by two birds that were reintroduced back in 2015 as part of the first ever Saker Falcon reintroduction programme. The results of the 5-year programme are described in detail in the open-access, peer-reviewed Biodiversity Data Journal.

Saker falcon, Bulgaria

Many factors contributed to the decline of the Saker Falcon in Bulgaria and globally, and most of them are human-caused. Populations lost big parts of their habitat due to changes in land use – the transition from grazing to arable crops led to the diminishing of key food sources. Other reasons include the use of poisonous baits and the accumulation of pesticides in the food chain, illegal trade of nest-poached chicks and eggs, power line electrocution, and lack of suitable nesting places.

Even after European legislation for the protection of wildlife was implemented, and regulations were issued on the use of pesticides in Bulgaria, the Saker Falcon population did not stabilise. Its endangered status further prompted joint conservation efforts between NGOs and national authorities.

As a result, a re-introduction programme for the Saker Falcon in Bulgaria was initiated in 2015, aiming to release a number of birds over a certain period of time using adaptation aviaries, or hacks. The Green Balkans Wildlife Rehabilitation and Breeding Centre (WRBC) in Stara Zagora facilitated the captive breeding of a group of Saker Falcons imported from Austria, Hungary, Germany, Slovakia and Poland by constructing ten breeding aviaries and two stock cages for juvenile falcons and equipping them with internal surveillance cameras.

Saker falcon fledges, Bulgaria

Between 2015 and 2020, a total of 80 Saker Falcons – 27 females and 53 males, were released via the hacking method from four aviaries near the town of Stara Zagora. Out of them, 64 had been bred and hatched at the WRBC.

Observation records from 2018 confirmed that at least one pair of the falcons released in 2015 was currently breeding in the wild in Bulgaria. This observation proves that with the help of hacking, Sakers can survive in the wild until maturity, return to the region of their release and breed successfully. In 2020, the female bird in the breeding pair was changed with a Saker Falcon released in 2016, and the new pair bred successfully.

In 2020, the programme was restarted for another 5 years, with the aim to release 100 Saker Falcons and have six pairs breeding in the wild. This will help restore the Saker Falcon population in the southern Balkans and facilitate gene flow amongst fragmented populations from Central Europe to Kazakhstan.

Helping this iconic species successfully establish a self-sustaining population in Bulgaria has profound implications for conservation in the country – not only in terms of public awareness of species conservation, but also as an indicator of wider environmental issues.

Original source:

Lazarova I, Petrov R, Andonova Y, Klisurov I, Dixon A (2021) Re-introduction of the Saker Falcon (Falco cherrug) in Bulgaria – preliminary results from the ongoing establishment phase by 2020. Biodiversity Data Journal 9: e63729. https://doi.org/10.3897/BDJ.9.e63729

Unlocking Australia’s biodiversity, one dataset at a time

Illustration by CSIRO

Australia’s unique and highly endemic flora and fauna are threatened by rapid losses in biodiversity and ecosystem health, caused by human influence and environmental challenges. To monitor and respond to these trends, scientists and policy-makers need reliable data.

Biodiversity researchers and managers often don’t have the necessary information, or access to it, to tackle some of the greatest environmental challenges facing society, such as biodiversity loss or climate change. Data can be a powerful tool for the development of science and decision-making, which is where the Atlas of Living Australia (ALA) comes in.

ALA – Australia’s national biodiversity database – uses cutting-edge digital tools which enable  people to share, access and analyse data about local plants, animals and fungi. It brings together millions of sightings as well as environmental data like rainfall and temperature in one place to be searched and analysed. All data are made publicly available – ALA was established in line with open-access principles and uses an open-source code base.

The impressive set of databases on Australia’s biodiversity includes information on species occurrence, animal tracking, specimens, biodiversity projects, and Australia’s Natural History Collections. The ALA also manages a wide range of other data, including information on spatial layers, indigenous ecological knowledge, taxonomic profiles and biodiversity literature. Together with its partner tools, the ALA has radically enhanced ease of access to biodiversity data. A forum paper recently published with the open-access, peer-reviewed Biodiversity Data Journal details its history, current state and future directions.

Established in 2010 under the Australian Government’s National Collaborative Research Infrastructure Strategy (NCRIS) to support the research sector with trusted biodiversity data, it now delivers data and related services to more than 80,000 users every year, helping scientists, policy makers, environmental planners, industry, and the general public to work more efficiently. It also supports the international community as the Australian node of the Global Biodiversity Information Facility and the code base for the successful international Living Atlases community.

With thousands of records being added daily, the ALA currently contains nearly 95 million occurrence records of over 111,000 species, the earliest of them being from the late 1600s. Among them, 1.7 million are observation records harvested by computer algorithms, and the trend is that their share will keep growing.

An ALA staff member. Photo by CSIRO

Recognising the potential of citizen science for contributing valuable information to Australia’s biodiversity, the ALA became a member of the iNaturalist Network in 2019 and established an Australian iNaturalist node to encourage people to submit their species observations. Projects like DigiVol and BioCollect were also born from ALA’s interest in empowering citizen science.

The ALA BioCollect platform supports biodiversity-related projects by capturing both descriptive metadata and raw primary field data. BioCollect has a strong citizen science emphasis, with 524 citizen science projects that are open to involvement by anyone. The platform also provides information on projects related to ecoscience and natural resource management activities.

Hosted by the Australian Museum, DigiVol is a volunteer portal where over 6,000 public volunteers have transcribed over 800,000 specimen labels and 124,000 pages of field notes. Harnessing the power and passion of volunteers, the tool makes more information available to science by digitising specimens, images, field notes and archives from collections all over the world.

Built on a decade of partnerships with biodiversity data partners, government departments, community and citizen science organisations, the ALA provides a robust suite of services, including a range of data systems and software applications that support both the research sector and decision makers. Well regarded both domestically and internationally, it has built a national community that is working to improve the availability and accessibility of biodiversity data.

Original source:

Belbin L, Wallis E, Hobern D, Zerger A (2021) The Atlas of Living Australia: History, current state and future directions. Biodiversity Data Journal 9: e65023. https://doi.org/10.3897/BDJ.9.e65023