Notice me! Neglected for over a century, Black sea spider crab re-described

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

Even though recognised in the Mediterranean Sea, the Macropodia czernjawskii spider crab was ignored by scientists (even by its namesake Vladimir Czernyavsky) in the regional faunal accounts of the Black Sea for more than a century. At the same time, although other species of the genus have been listed as Black sea fauna, those listings are mostly wrong and occurred either due to historical circumstances or misidentifications.Now, scientists re-describe this, most likely, only species of the genus occurring in the Black Sea in the open-access journal Zoosystematics and Evolution.

The studied spirder crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

The spider crab genus Macropodia was discovered in 1814 and currently includes 18 species, mostly occurring in the Atlantic and the Mediterranean. The marine fauna of the Black Sea is predominantly of Mediterranean origin and Macropodia czernjawskii was firstly discovered in the Black Sea in 1880, but afterwards, its presence there was largely ignored by the scientists.

After the revision of available type specimens from all available collections in the Russian museums and the Senckenberg Museum in Frankfurt-on-Main, as well as newly collected material in the Black Sea and the North-East Atlantic, a research team of scientists, led by Dr Vassily Spiridonov from Shirshov Institute of Oceanology of Russian Academy of Sciences, re-described Macropodia czernjawskii and provided the new data on its records and updated its ecological characteristics.

“The analysis of the molecular genetic barcode (COI) of the available material of Macropodia species indicated that M. czernjawskii is a very distinct species while M. parva should be synonimised with M. rostrata, and M. longipes is a synonym of M. tenuirostris”,

states Dr Spiridonov sharing the details of the genus analysis.

All Macropodia species have epibiosis and M. czernjawskii is no exception: almost all examined crabs in 2008-2018 collections had significant epibiosis. It normally consists of algae and cyanobacteria and, particularly, a non-indigenous species of red alga Bonnemaisonia hamifera, officially reported in 2015 at the Caucasian coast of the Black Sea, was found in the epibiosis of M. czernjawskii four years earlier.

“It improves our understanding of its invasion history. Museum and monitoring collections of species with abundant epibiosis (in particular inachid crabs) can be used as an additional tool to record and monitor introduction and establishments of sessile non-indigenous species,”

suggests Dr Spiridonov.
The spider crab species Macropodia czernjawskii in the wild, Tuaphat (near Gelendzhik), Caucasus, Black Sea.
Photo by Sergey Anosov

***

Original source:

Spiridonov VA, Simakova UV, Anosov SE, Zalota AK, Timofeev VA (2020) Review of Macropodia in the Black Sea supported by molecular barcoding data; with the redescription of the type material, observations on ecology and epibiosis of Macropodia czernjawskii (Brandt, 1880) and notes on other Atlanto-Mediterranean species of Macropodia Leach, 1814 (Crustacea, Decapoda, Inachidae). Zoosystematics and Evolution 96(2): 609-635. https://doi.org/10.3897/zse.96.48342

Shining like a diamond: a new species of diamond frog from northern Madagascar

Despite the active ongoing taxonomic progress on the Madagascar frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. More new species are constantly being discovered, often within already well-studied areas. So, in one of the relatively well-studied parks in northern Madagascar, a new species of diamond frog, Rhombophryne ellae, was found in 2017. Now, the discovery is published in the open-access journal Zoosystematics and Evolution.

Despite the active ongoing taxonomic progress on Madagascar’s frogs, the amphibian inventory of this hyper-diverse island is still very far from being complete. The known diversity of the diamond frog genus Rhombophryne in Madagascar has increased significantly (more than doubled!) over the last 10 years, but still there are several undescribed candidate species awaiting description. New species are constantly being discovered in Madagascar, often even within already well-studied areas. One such place is the Montagne d’Ambre National Park in northern Madagascar.

Montagne d’Ambre National Park is widely known for its endemic flora and fauna, waterfalls and crater lakes, and considered to be a relatively well-studied area. Yet, only two studies have been published so far on the reptiles and amphibians of the Park.

Rhombophryne ellae was captured just as Cyclone Ava began to make itself felt across Madagascar with high winds and heavy rain. The camp where Dr. Scherz and his team were based became flooded, with rivers running through the kitchen and sleeping area. Miserable weather for humans, but a time of increased activity for some of the more elusive amphibians of the forest.
Credit: Mark D. Scherz
License: CC-BY 4.0

Serving the pursuit of knowledge of the herpetofauna in the region, Germany-based herpetologist Dr. Mark D. Scherz (Bavarian State Collection of Zoology, Technical University of Braunschweig, University of Konstanz) published a description of a new diamond frog species: Rhombophryne ellae, in the open-access journal Zoosystematics and Evolution.

Rhomobphryne ellae
Credit: Mark D. Scherz
License: CC-BY 4.0

“As soon as I saw this frog, I knew it was a new species. The orange flash-markings on the legs and the large black spots on the hip made it immediately obvious to me. During my Master’s and PhD research, I studied this genus and described several species, and there are no described species with such orange legs, and only few species have these black markings on the hip. It’s rare that we find a frog and are immediately able to recognise that it is a new species without having to wait for the DNA sequence results to come back, so this was elating”,

shares Dr. Scherz.

The new species is most closely related to a poorly-known and still undescribed species from Tsaratanana in northern Madagascar, but is otherwise quite different from all other diamond frogs. With the orange colouration on its legs, Rhombophryne ellae joins the growing list of frogs that have red to orange flash-markings. The function of this striking colouration remains unknown, despite having evolved repeatedly in frogs, including numerous times in Madagascar’s narrow-mouthed frogs alone.

The new species, Rhombophryne ellae, is well camouflaged among the rainforest leaflitter
Credit: Mark D. Scherz
License: CC-BY 4.0

“The discovery of such a distinctive species within a comparatively well-studied park points towards the gaps in our knowledge of the amphibians of the tropics. It also highlights the role that bad weather, especially cyclones, can play in bringing otherwise hidden frogs out of hiding—Rhombophryne ellae was caught just as Cyclone Ava was moving in on Madagascar, and several other species my colleagues and I have recently described were also caught under similar cyclonic conditions”,

says Dr. Scherz.
Rhombophryne ellae is a small, probably semi-fossorial (sub-terranean-dwelling) species of diamond frog, at home amongst the leaf litter of Montagne d’Ambre National Park, north Madagascar
Credit: Mark D. Scherz
License: CC-BY 4.0

The species is known so far only from a single specimen, making it difficult to estimate its conservation status. Yet, based on the status of other, related frogs from the same area, it will probably be Red-listed as Near Threatened due to its presumably small range and micro-endemicity.

Original source:

Scherz MD (2020) Diamond frogs forever: a new species of Rhombophryne Boettger, 1880 (Microhylidae, Cophylinae) from Montagne d’Ambre National Park, northern Madagascar. Zoosystematics and Evolution 96(2): 313-323. https://doi.org/10.3897/zse.96.51372


A new character for Pokémon? Novel endemic dogfish shark species discovered from Japan

A new endemic deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity. The finding brings the amount of spurdogs shark species inhabiting Japanese waters to six. The discovery is published in the open-access journal Zoosystematics and Evolution.

Newly discovered creatures can often be as impressive and exciting as the ones from the Japanese movies and shows. Many of those fictional characters, including inhabitants of the famous Pokémon universe, might have their analogues among the real animals native to Japan. Maybe, a new species of the dogfish shark published in the open-access journal Zoosystematics and Evolution is also “a real Pokémon” to be?

A new deep-water dogfish shark: Squalus shiraii, was discovered in the tropical waters of Southern Japan by an international team of scientists, led by Dr. Sarah Viana from South African Institute for Aquatic Biodiversity


 Map of the North-western Pacific Ocean, showing the geographical distribution of Squalus shiraii
Credit: Sarah Viana
License: CC-BY 4.0

The new shark has the body length of 59-77 cm and some unique characteristics such as tall first dorsal fin and caudal fin with broad white margins. Currently, the species is known exclusively as a Japanese endemic, occurring in the tropical shallow waters of Southern Japan in the North-western Pacific.


Squalus shiraii lateral view
Credit: Sarah Viana
License: CC-BY 4.0

Spurdogs represent commercially important for the world fish trade taxa. They are caught for a range of purposes: consumption of meat, fins and liver oil. Despite their high occurrence, the accurate identification data of species is scarce, population threats and trends remain unknown.

Japan currently represents one of the world’s leading shark fish trade countries, though, during the last decades the amount of shark catches is decreasing and over 78 elasmobranch species traded in Japanese shark fin markets are now evaluated as threatened.

The new species Squalus shiraii previously used to be massively misidentified with shortspine spurdog, due to the resembling shape of body, fins and snout length. However, there are some differences, defining the specificity of the new species.

Squalus shiraii has body brown in colour, postventral and preventral caudal margins whitish, dorsal and ventral caudal tips broadly white and black upper caudal blotch evident in adults. S. mitsukurii has body conspicuously black to dark grey and caudal fins black throughout with post-ventral caudal margin fairly whitish and black upper caudal blotch not evident in adults”, shares lead author Dr. Viana.

Scientists propose the name for the newly described species as Shirai’s spurdog in honour to Dr. Shigeru Shirai, the former Japanese expert of the group.

Original source:
Viana STFL, Carvalho MR (2020) Squalus shiraii sp. nov. (Squaliformes, Squalidae), a new species of dogfish shark from Japan with regional nominal species revisited. Zoosystematics and Evolution 96(2): 275-311. https://doi.org/10.3897/zse.96.51962

Contact:
Dr. Sarah Viana
Email: stviana@gmail.com


Welcome to the House of Slytherin: Salazar’s pit viper, a new green pit viper from India

During an expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot, a new species of green pit viper Trimeresurus salazar with unique stripes and colouration patterns was discovered near Pakke Tiger Reserve. Scientists named the snake after J.K. Rowling’s fictional character, the Parselmouth wizard and the founder of one of the houses in the magical school Hogwarts, Salazar Slytherin. The discovery is published in the open-access journal Zoosystematics and Evolution.

A new green pit viper species of the genus Trimeresurus was discovered during the herpetological expedition to Arunachal Pradesh in India, part of the Himalayan biodiversity hotspot. The scientists named the newly-discovered snake Trimeresurus salazar after a Parselmouth (able to talk with serpents) wizard, co-founder of Hogwarts School of Witchcraft and Wizardry and the founder of the House of Slytherin – Salazar Slytherin, the fictional character of J.K. Rowling’s saga “Harry Potter”. The discovery is published in the open-access journal Zoosystematics and Evolution.

The pit vipers in the genus Trimeresurus are charismatic venomous serpents, distributed widely across east and southeast Asia. In total, the genus includes at least 48 species, with fifteen representatives occurring in India. The species belonging to the genus are morphologically cryptic, which makes it difficult to distinguish them in the field. As a result, their real diversity could be underestimated.

Arunachal Pradesh, where the new species was found, belongs to the Himalayan biodiversity hotspot, which explains the diverse flora and fauna being continuously discovered there.

The new green pit viper demonstrates a unique orange to reddish stripe, present on the head and body in males.


Trimeresurus salazar sp. nov. juvenile male from Pakke Tiger Reserve.
Credit: Aamod Zambre and Chintan Seth, Eaglenest Biodiversity Project.
License: CC-BY 4.0

Explaining the name of the new species, the scientists suggest that it is colloquially referred to as the Salazar’s pit viper.

This is already the second species discovered within the course of the expedition to Arunachal Pradesh, which reflects the poor nature of biodiversity documentation across north-eastern India.

“Future dedicated surveys conducted across northeastern India will help document biodiversity, which is under threat from numerous development activities that include road widening, agriculture, and hydro-electric projects”, shares the lead researcher Dr. Zeeshan A. Mirza from National Centre for Biological Science of Bangalore, India.


Trimeresurus salazar sp. nov. holotype male BNHS 3554 in life
Credit: Zeeshan Mirza et al., 2020
License: CC-BY 4.0

Additional information

Contact:
Dr. Zeeshan A. Mirza
Email: snakeszeeshan@gmail.com
Facebook: https://www.facebook.com/snakeszeeshan
Instagram: zeeshan_a_mirza

Original source:

Mirza ZA, Bhosale HS, Phansalkar PU, Sawant M, Gowande GG, Patel H (2020) A new species of green pit vipers of the genus Trimeresurus Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh, India. Zoosystematics and Evolution 96(1): 123-138. https://doi.org/10.3897/zse.96.48431

New species of stiletto snake capable of sideways strikes discovered in West Africa

The first discovered specimen of the newly described species (Atractaspis branchi or Branch’s Stiletto Snake) in its natural habitat. Photo by Mark-Oliver Roedel.

Following a series of recent surveys in north-western Liberia and south-eastern Guinea, an international team of researchers found three stiletto snakes which were later identified as a species previously unknown to science.

The discovery, published in the open-access journal Zoosystematics and Evolution by the team of Dr Mark-Oliver Roedel from the Natural History Museum, Berlin, provides further evidence for the status of the western part of the Upper Guinea forest zone as a center of rich and endemic biodiversity.

Curiously, stiletto snakes have unusual skulls and venom delivery system, allowing them to attack and stab sideways with a fang sticking out of the corner of their mouths. While most of these burrowing snakes are not venomous enough to kill a human – even though some are able to inflict serious tissue necrosis – this behaviour makes them impossible to handle using the standard approach of holding them with fingers behind the head. In fact, they can even stab with their mouths closed.

The new species, called Atractaspis branchi or Branch’s Stiletto Snake, was named to honor to the recently deceased South African herpetologist Prof. William Roy (Bill) Branch, a world leading expert on African reptiles.

The first specimen was found at night, moving along the steep slope on the left bank of the small creek (Liberia). Photo by Mark-Oliver Roedel.

The new species lives in primary rainforest and rainforest edges in the western part of the Upper Guinea forests. Branch’s Stiletto Snake is most likely endemic to this area, a threatened biogeographic region already known for its unique and diverse fauna.

The first specimen of the new species was collected at night from a steep bank of a small rocky creek in a lowland evergreen rainforest in Liberia. Upon picking it up, the snake tried to hide its head under body loops, bending it at an almost right angle, so that its fangs were partly visible on the sides. Then, it repeatedly stroke. It is also reported to have jumped distances almost as long as its entire body. The other two specimens used for the description of the species were collected from banana, manioc and coffee plantations in south-eastern Guinea, about 27 km apart.

“The discovery of a new and presumably endemic species of fossorial snake from the western Upper Guinea forests thus is not very surprising,” conclude the researchers. “However, further surveys are needed to resolve the range of the new snake species, and to gather more information about its ecological needs and biological properties.”

Close up of the Branch’s Stiletto Snake in its natural habitat. Photo by Mark-Oliver Roedel.

###

Original source:

Rödel M, Kucharzewski C, Mahlow K, Chirio L, Pauwels OSG, Carlino P, Sambolah G, Glos J (2019) A new stiletto snake (Lamprophiidae, Atractaspidinae, Atractaspis) from Liberia and Guinea, West Africa. Zoosystematics and Evolution 95(1): 107-123. https://doi.org/10.3897/zse.95.31488

Life in the fast flow: Tadpoles of new species rely on ‘suction cups’ to keep up

The frogs living in the rainforest of Sumatra also represent a new genus

Indonesia, a megadiverse country spanning over 17,000 islands located between Australia and mainland Asia, is home to more than 16% of the world’s known amphibian and reptile species, with almost half of the amphibians found nowhere else in the world. Unsurprisingly, biodiversity scientists have been feverishly discovering and describing fascinating new animals from the exotic island in recent years.

Sumatran forest

Such is the case of an international team from the University of Hamburg, Germany, University of Texas at Arlington, USA, University of Bern, Switzerland and Bandung Institute of Technology, Indonesia, who came across a curious tadpole while collecting amphibian larvae from fast-flowing streams as part of an arduous expedition in the remote forests on the island of Sumatra.

To the amazement of the scientists, it turned out that the tadpoles possess a peculiar cup-like structure on their bellies, in addition to the regular oral disk found in typical tadpoles. As a result, the team described two new species and a genus in the open access journal Zoosystematics and Evolution. A previously known, but misplaced in an unsuitable genus, frog was also added to the group, after it was proved that it takes advantage of the same modification.

This phenomenon where tadpoles display ‘belly suckers’ is known as gastromyzophory and, albeit not unheard of, is a rare adaptation that is only found in certain toads in the Americas and frogs in Asia,” explains lead author Umilaela Arifin.

The abdominal sucker, it is hypothesized, helps these tadpoles to exploit a very special niche – fast-flowing streams – where the water would otherwise be too turbulent and rapid to hang around. Gastromyzophorous species, however, rely on the suction provided by their modified bellies to secure an exclusive access to plentiful food, such as algae, while the less adapted are simply washed away.

When the scientists took a closer look at the peculiar tadpoles and their adult forms, using a powerful combination of molecular and morphological data, they realized that they had not only stumbled upon a rare amphibian trait, but had also discovered two brand new species of frogs in the process.

Sumaterana crassiovis

Moreover, the animals turned out so distinct in their evolutionary makeup, compared to all other frogs, that the scientists had to create a whole new genus to accommodate them. Formally named Sumaterana, the genus is to be commonly referred to as Sumatran Cascade Frogs.

We decided to call the new genus Sumaterana after Sumatra, to reflect the fact that these new species, with their rare evolutionary adaptation are endemic to Sumatra’s rainforests and, in a sense, are emblematic of the exceptional diversity of animals and plants on the island,” says co-author Dr. Utpal Smart. “Tragically, all of them are in peril today, given the current rate of deforestation.

The authors agree that much more taxonomic work is still needed to determine and describe Sumatra’s herpetofaunal diversity, some of which they fear, could be irreversibly lost well before biologists have the chance to discover it.

###

Original source:

Arifin U, Smart U, Hertwig ST, Smith EN, Iskandar DT, Haas A (2018) Molecular phylogenetic analysis of a taxonomically unstable ranid from Sumatra, Indonesia, reveals a new genus with gastromyzophorous tadpoles and two new species. Zoosystematics and Evolution 94(1): 163-193. https://doi.org/10.3897/zse.94.22120

Life in marine driftwood: The case of driftwood specialist talitrids

Driftwood in the sea – either floating or stranded on beaches – is a common feature particularly in temperate regions. Large quantities of driftwood, termed driftwood depositories, may collect at the mouth of small streams associated with marshes and have been present for some 120 millennia – since the origin of flowering plants.

Once marine driftwood begins to decay, it undergoes a specific succession. Firstly, it is colonized by salt tolerant, wood degrading fungi and bacteria, along with a few invertebrates able to digest wood by producing native wood degrading enzymes. The latter include gribbles (isopods) and chelurid amphipods.

Driftwood hoppers (talitrids), as well as isopods, chilopods, insect larvae, some ants and termites, comprize the secondary colonizers. They are all characterized by their inability to utilize driftwood directly. Instead, they rely on symbiotic microflora for digestive purposes.

Within all talitrids, the driftwood hoppers count as few as seven species, most likely because they are extremely difficult to locate and, therefore, discover and describe. Apart from living in tiny burrows, they measure between 13 and <6 mm, which makes the latter the smallest known talitrid.

Having reviewed the driftwood specialized talitrids, Dr. David Wildish of the St. Andrews Biological Station, Canada, concludes that all seven known species demonstrate dwarfism based on slow metabolism and growth. Their sexual development begins earlier compared to faster growing related species. All of them are also characterized with reduced eye size and absence of dorsal pigment patterns.

In his review article published in the open access journal Zoosystematics and Evolution, the scientist confirms that dwarfism in driftwood hoppers has evolved due to poor diet, in turn resulting in slowed metabolism and growth. A further adaptive challenge is the empty gribble burrow size occupied by talitrids (burrow diameter between 0.6 to 5 mm) with the smaller ones being more widespread. Larger talitrids can only complete their life cycle in the larger burrows.

“The size gradient in gribble burrow diameter provides a satisfactory explanation for serial dwarfism within the driftwood talitrids and is why each species becomes successively smaller,” explains the researcher.

Responsibility for first establishing the driftwood talitrid ecological grouping was made during graduate studies by David Wildish, London University, U.K., and Laura Pavesi, University of Rome, Italy. The two criteria for inclusion of a talitrid in the driftwood grouping was: behavioral fidelity to the occupied driftwood and that the food source was solely rotting driftwood (see references).

The larger talitrid family are small/medium in body length (< 30 mm) crustaceans with more than 400 species described in the world list. Ecological groupings within the family include marine/estuarine supralittoral wrack generalists, sand-burrowing, marsh-living and driftwood specialists. A few freshwater and many terrestrial species are also known.

###

Original source:

Wildish DJ (2017) Evolutionary ecology of driftwood talitrids: a review. Zoosystematics and Evolution 93(2): 353-361. https://doi.org/10.3897/zse.93.12582

Origins of an enigmatic genus of Asian butterflies carrying mythological names decoded

A group of rare Asian butterflies which have once inspired an association with Hindu mythological creatures have been quite a chaos for the experts. In fact, their systematics turned out so confusing that in order to decode their taxonomic placement, scientists had to dig up their roots some 43 million years back.

Now, having shed new light on their ancestors, a team of researchers from the Biodiversity Institute of Ontario at University of Guelph, Agriculture and Agri-Food Canada and University of Vienna, published their findings in the open access journal Zoosystematics and Evolution.

CalinagaTogether, Drs. Valentina Todisco, Vazrick Nazari and Paul Hebert arrived at the conclusion that the enigmatic genus (Calinaga) originated in southeast Tibet in the Eocene as a result of the immense geological and environmental impact caused by the collision between the Indian and Asian subcontinents. However, the diversification within the lineage was far from over at that point. In the following epochs, the butterflies had to adapt to major changes when Indochina drifted away, leading to the isolation of numerous populations; and then again, when the Pleistocene climatic changes took their own toll.

To make their conclusions, the scientists studied 51 specimens collected from a wide range of localities spanning across India, South China, Laos, Vietnam, Myanmar and Thailand. For the first time for the genus, the authors conducted molecular data and combined it with an examination of both genitalia and wing patterns – distinct morphological characters in butterflies. While previous estimates had reported existence of anywhere between one and eleven species in the genus, the present study identified only four, while confirming how easy it is to mislabel samples based on earlier descriptions.

However, the researchers note that they have not sampled specimens from all species listed throughout the years under the name of the genus, so they need additional data to confirm the actual number of valid Calinaga species. The authors are to enrich this preliminary study in the near future, analysing both a larger dataset and type specimens in collaboration with the Natural History Museum of London that holds the largest Calinaga collection.

Despite being beautiful butterflies, the examined species belong to a genus whose name derives from the Hindu mythical reptilian creatures Nāga and a particular one of them – Kaliya, which is believed to live in Yamuna river, Uttar Pradesh, and is notorious for its poison. According to the Hindu myths, no sooner than Kaliya was confronted by the major deity Krishna, did it surrender.

“It seems that the modern taxonomy of Calinaga is in need of a Krishna to conquer these superfluous names and cleanse its taxonomy albeit after careful examination of the types and sequencing of additional material,” comment the authors.

###

Original source:

Todisco V, Nazari V, Hebert PDN (2017) Preliminary molecular phylogeny and biogeography of the monobasic subfamily Calinaginae (Lepidoptera, Nymphalidae). Zoosystematics and Evolution 93(2): 255-264. https://doi.org/10.3897/zse.93.10744

New species of Brazilian copepod suggests ancient species diversification and distribution

A new species of groundwater copepod has been discovered in the rocky savannas of Brazil – an ecosystem suffering from heavy anthropogenic impact. Upon description, the tiny crustacean turned out to also represent a previously unknown genus. It is described by Dr. Paulo H. C. Corgosinho, Montes Claros State University, Brazil, and his team in the open access journal Zoosystematics and Evolution.

Prior to the discovery of the new species, named Eirinicaris antonioi, only one genus of its subfamily (Parastenocaridinae) had been recorded in the Neotropical region, which comes to show that related species had already spread across a huge range when the ancient supercontinent Gondwana split apart.

The new copepod measures about 0,300 mm and can be told apart by its morphological characteristics, including unusual sensorial structures at the rear part of the body, as well as unique sexual dimorphism.

The copepods of the family Parastenocarididae are adapted to life in groundwater, where they thrive between sand grains. These tiny creatures measure less than 1 mm, ranging between 0,200 and 0,400 mm in length. They can be found in various microbiotopes along rivers, lakes and human-made structures, such as dug or artesian wells. Alternatively, these copepods might be associated with mosses and other semi-terrestrial environments.

“This is the first species described from Goiás state, Central Brazil,” explain the authors. “With the discovery of this new species our knowledge about the geographical distribution of the copepod family Parastenocarididae is increased. Our project highlights the vast amounts of undiscovered biodiversity of the Brazilian rocky savannas, which are under high anthropogenic threat.”

###

Original source:

Corgosinho PHC, Schizas NV, Previattelli D, Falavigna da Rocha CE, Santos-Silva EN (2017) A new genus of Parastenocarididae (Copepoda, Harpacticoida) from the Tocantins River basin (Goiás, Brazil), and a phylogenetic analysis of the Parastenocaridinae. Zoosystematics and Evolution 93(1): 167-187. https://doi.org/10.3897/zse.93.11602

Species new to science named after a ‘Dungeons & Dragons’ character

Focused on terrestrial gastropods, more commonly known as land snails, a joint team of biologists from the Natural History Museum of Stuttgart, Germany and the Zoology Museum of São Paulo, Brazil, have been researching the Brazilian caves. In their latest paper, published in the journal Zoosystematics and Evolution, the scientists describe the fauna from several caves in central Brazil, including a new tiny species named after a character from the popular fantasy tabletop role-playing game Dungeons & Dragons.

The team of Dr. Rodrigo Salvador, Daniel Cavallari and Dr. Luiz Simone encountered a rich assembly of species, several of which measured as much as a few millimetres. However, apart from filling important gaps in the knowledge of these tropical animals, they went even further, having discovered a land snail new to science. While it is not uncommon for studies dealing with the invertebrate fauna to end up describing new species, this minute mollusc (nearly 2 mm in length) attracted extra attention. The team which discovered the mollusc has named it Gastrocopta sharae, after Shar, the goddess of darkness, caverns and secrets in Dungeons & Dragons.

“It’s a fitting name for a tiny snail that lives hidden in the dark recesses of a cavern,” explain the authors. “If your knowledge of mythological beings seems to have failed you, do not fret. Usually biologists tend to honour Greek and Roman deities when naming species, but the goddess Shar has a more colourful background. She is from Dungeons & Dragons, the most famous role-playing game in the world, currently in its 5th edition and a staple of geek culture.”

Nevertheless, this is not the first time that Dungeons & Dragons has been immortalised in a species’ scientific name. In 2014, the very same team described another tiny snail, this time, one with a taste for deep waters, specifically those of the Atlantic Ocean. The scientists named it Halystina umberlee, after another Dungeons & Dragons goddess – Umberlee, who commands the harshness and perils of the sea.

The tropical snails are still poorly understood, although they are one of the most threatened animal groups – both by human activities and environmental changes. Moreover, since cave-dwelling invertebrates, in general, receive scarce attention from researchers, it should come as no surprise that cave-dwelling snails are even less known.

“Getting to know the fauna inhabiting each cavern is a demanding task, but a much-needed one,” note the researchers. “Caverns are known to have very fragile ecosystems and several lack proper protection, so works like ours are an important step for conservation efforts.”

###

Original source:

Salvador RB, Cavallari DC, Simone LRL (2017) Taxonomical study on a sample of land and freshwater snails from caves in central Brazil, with description of a new species. Zoosystematics and Evolution 93(1): 135-141. https://doi.org/10.3897/zse.93.10995