The recent Desert Locust upsurge had a major impact on Pakistan’s agriculture, with swarms causing immense damage to all types of crops. A joint French-Pakistani team provides an overview of the dynamics of this upsurge, assesses its impact and control measures, and clarifies the role of different stakeholders in the management of this pest, suggesting various improvements for the future. The study was published in the open access Journal of Orthoptera Research.
In 2019 and 2020, desert locusts once again plagued parts of East Africa and huge areas as far as India and Pakistan through the Arabian Peninsula, in an infestation that was described as the worst in decades. A serious agricultural pest, the desert locust Schistocerca gregaria can feed on most types of crops, including grains, vegetables and fruit, causing significant damage to agricultural production and threatening food security in many countries.
Since the 1960s, a preventive control strategy against this pest has been implemented, based on monitoring of outbreak areas and ecological conditions, followed, if necessary, by early intervention and limited use of pesticides, so that any outbreak can be stopped as soon as possible. With 60 years of hindsight, desert locust invasions are now less frequent, smaller in scale and, if they cannot be stopped early, they are adequately managed.
However, financial and political uncertainties in many parts of the desert locust’s range continue to sustain the threat, and not all invasions can be stopped early. This was the case in 2018, when such an upsurge was largely aided by rains in the southern Arabian Peninsula. Locusts could not be detected for several months and therefore went unchecked, mainly due to the insecure conditions, especially in Yemen. The swarms then progressively contaminated a large part of East Africa and spread to Iran, Pakistan and India. Pakistan, in particular, subject to periodic swarm invasions in the past, faced a particularly severe situation in 2019-2020, where the swarms could only be contained after several months of intensive control.
Scientists Riffat Sultana, Ahmed Ali Samejo and Samiallah Soomro (University of Sindh, Pakistan), Santosh Kumar (University of Cholistan, Pakistan) and Michel Lecoq (former director of a locust research unit at CIRAD, France) synthesised these two years of upsurge in a new research article published in the open-access Journal of Orthoptera Research. They focused on Pakistan, the damage caused in this country, and the surveillance and control operations undertaken, clarifying, at the same time, at both national and international level, the role of the different actors in the management of this pest, and suggesting some improvements for the future.
During this upsurge, a great deal of damage was caused to all types of crops. The Government of Pakistan’s preliminary estimate of monetary losses due to desert locusts for the agricultural seasons 2020 and 2021 ranges from $3.4 billion to $10.21 billion. More than 3 million people were facing severe acute food insecurity.
The authors also note that Pakistan needs to continue to be prepared and improve the prevention system already in place. They suggest developing compensatory measures for local populations in the event of an uncontrolled invasion at an early stage, increasing the use of alternatives to chemical pesticides such as mycopesticides, and maintaining funding mechanisms that provide sustainable support even in times of recession. Perhaps the most important challenge is certainly to maintain long-term efforts to build resilience, despite the apparent absence of imminent threats.
Research article:
Sultana R, Kumar S, Samejo AA, Soomro S, Lecoq M (2021) The 2019–2020 upsurge of the desert locust and its impact in Pakistan. Journal of Orthoptera Research 30(2): 145-154. https://doi.org/10.3897/jor.30.65971
“Trends in Arthropods of Alpine Aquatic Ecosystems” is the first topical collection for the journal of the Swiss Entomological Society
The open-access, peer-reviewed scholarly journal Alpine Entomology, published by Pensoft on behalf of the Swiss Entomological Society, announced its very first topical collection of articles, which will be focusing on arthropods associated with aquatic ecosystems in mountainous regions.
The journal is currently inviting scientists, working on aquatic fauna from alpine habitats, to openly publish their research articles and short notices that provide evidence how arthropods’ biogeography, species communities, distribution, behaviour and morphology have changed in recent times.
The aim of the “Trends in Arthropods of Alpine Aquatic Ecosystems” collection is to bring together data and findings about what many agree is the most impacted type of environment on Earth: aquatic ecosystems, especially running waters.
The collection will remain open for submissions for the next two years. In the meantime, the accepted manuscripts will be published on a rolling basis, as soon as they are ready for publication.
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
“(…) pronotum often takes on various extreme modifications, giving to the insects a most grotesque or bizarre appearance (…)”
quote from Hancock, Joseph Lane (1907) Orthoptera fam. Acridiidae, subfam Tetriginae. Genera Insectorum.
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? Well, I must disappoint you. What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
Most of the research you can find out there is probably based on genera Tetrix and Paratettix in Europe or Northern America (Adžić et al. 2021). Species of Northern America (Nearctic region, 35 species) and Europe (W Palearctic region, 11 species) are indeed best known from the standpoint of natural history, even though they represent only about 2% of the diversity. Here is the list of 19 species that are most often observed by amateur naturalists on the iNaturalist platform (Table 1) and as you can see 12 out of 19 species are indeed from Europe and Northern America. Because of that, let us focus on awesome neglected diversity in the tropics.
Species
Geographic distribution
N of observations
Tetrix subulata
Holarctic
618
Tettigidea lateralis
Nearctic
505
Tetrix undulata
W Palearctic
267
Tetrix tenuicornis
Palearctic
225
Criotettix bispinosus
Indochina and islands of SE Asia
225
Paratettix meridionalis
W Palearctic: Mediterranean
145
Paratettix mexicanus
Nearctic
111
Tetrix depressa
W Palearctic
90
Tetrix arenosa
Nearctic
82
Tetrix bipunctata
W Palearctic
77
Tetrix japonica
E Palearctic
73
Paratettix aztecus
S Nearctic to N Neotropics
54
Paraselina brunneri
E Australia
54
Nomotettix cristatus
Nearctic
53
Tetrix ceperoi
W Palearctic
51
Hyperyboella orphania
New Caledonia
49
Scelimena producta
Java, Sumatra, Bali
31
Eurymorphopus bolivariensis
New Caledonia
30
Discotettix belzebuth
Borneo
26
Table 1. Well-known Tetrigidae species. Pygmy grasshoppers with more than 25 Research-Grade observations in iNaturalist, together with their distribution briefly explained.
Why do I mention the iNaturalist platform? Because I think it is the future of zoology, especially of faunistics. Never before have we been able to simultaneously gather so much data from so many different places. I started using Flickr some time ago to search for photos of unidentified rare pygmy grasshoppers. I did find many rare species, and what is even crazier, species that were not known to science. I’ll try to present you with a glimpse of the diversity I found online, so maybe some new students or amateurs will contribute, as they did with Paraselina brunneri, after the study was published in ZooKeys.
It seems that “rare” species from Australia are not so rare after all
Many new records ofParaselina brunneri and Selivinga tribulata can now be found online, thanks to a study published with ZooKeys.
Enjoy some selected awesome places and selected amazing taxa that inhabit those places. Emphasis is given on the extremely rare and weird-looking, or as Hancock called them, bizarre and grotesque species. Those with leaf-like morphology, spines, warts, undulations, or horns. Enjoy a short voyage from the rainforests of Madagascar through the humid forests of Australia, New Guinea, Borneo, and finally the Atlantic Forest of Brazil.
Madagascar is home to some of the largest and most colourful species of Tetrigidae in whole world
Very peculiar are the species of the genera Holocerusand Notocerus, both of which were discussed in studies published in ZooKeys. Finally, one can find photographs of these beauties identified to species level.
Interesting fact about those large pygmy grasshoppers: When I visited the rainforests of Madagascar, I observed one Holocerus devriesei and took photos of it. The insect then took flight far away in the rainforest. Who could think that an animal with such a large back spines could be such a skilful flier! The same is maybe true for Notocerus.
Not all pygmy grasshoppers are large and colourful
Some species, like the Pymgy unicorns of Southern America are small but still interesting. Metopomystrum muriciense was described with ZooKeys from the Atlantic rainforests of Murici, Brazil, in 2017.
Some pygmy grasshoppers are weird
Giraffehoppers from New Guinea are among the most unique pygmy grasshoppers. Many species can be differentiated by the antennal shape, and maybe by face coloration. Those are very visual animals, and antennae and colours might be used for courtship (Tumbrinck & Skejo 2017).
For young entomologists: How did I decide to study pygmy grasshoppers?
No true biology student knows what she or he wants to study and which direction to take. With me, it was pretty much the same thing. Systematics caught my attention during primary and high school, and I always had a tendency to systematically compare data. My first idea was to study snakes, as I was amazed by shield-tailed snakes (Uropeltidae) and blind snakes (Scolecophidia), about whom I have read a lot. Unfortunately, I never saw representatives of those snake groups, but fortunately, there were a lot of animals that I had seen, and with whom I was more familiar in the field. Among them, there were grasshoppers and crickets (order Orthoptera). Together with Fran Rebrina, my friend and fellow student, I started the first systematic research of Orthoptera of Croatia and the Balkans. Our study on two Croatian endemic species, Rhacocleis buchichii and Barbitistes kaltenbachi, was published with ZooKeys last year.
In the first years of our Orthoptera studies (2011-2012), I never saw a single pygmy grasshopper in Croatia. I remember it as if it was yesterday when Fran and I asked our senior colleague, Ivan Budinski (BIOM, Sinj), where we could find Tetrigidae, and he confidently said that they are to be found around water. Peruća lake near the city of Vrlika was he place where I saw pygmy grasshoppers, namely Tetrix depressa and Tetrix ceperoi, for the first time ever. I could not believe that there were grasshoppers whose lifecycle is water dependent in any way, so I kept researching them, contacting leading European orthopterists familiar with them (Hendrik Devriese, Axel Hochkirch, Josef Tumbrinck), and checking all the museum collections where I could enter. The encounter on the shores of Peruća was the moment that determined my career as an entomologist. After I discovered specimens of the extremely rare Tetrix transsylvanica in Croatian Natural History Museum (HPM – Hrvatski Prirodoslovni Muzej, Zagreb) in 2013 (Skejo et al. 2014), and after a serendipitous discovery of a new Arulenus species (Skejo & Caballero 2016), I just decided that maybe this interesting group was understudied and required systematic research, and here I am in 2021, regularly publishing on this very group.
References
Adžić K, Deranja M, Pavlović M, Tumbrinck J, Skejo J (2021). Endangered Pygmy Grasshoppers (Tetrigidae). Imperiled – Enyclopaedia of Conservation,. Elsevier, https://doi.org/10.1016/B978-0-12-821139-7.00046-5
Mathieu É, Pavlović M, Skejo J (2021) The true colours of the Formidable Pygmy Grasshopper (Notocerus formidabilis Günther, 1974) from the Sava region (Madagascar). ZooKeys 1042: 41-50. https://doi.org/10.3897/zookeys.1042.66381
Silva DSM, Josip Skejo, Pereira MR, De Domenico FC, Sperber CF (2017) Comments on the recent changes in taxonomy of pygmy unicorns, with description of a new species of Metopomystrum from Brazil (Insecta, Tetrigidae, Cleostratini, Miriatrini). ZooKeys 702: 1-18. https://doi.org/10.3897/zookeys.702.13981
Skejo J, Connors M, Hendriksen M, Lambert N, Chong G, McMaster I, Monaghan N, Rentz D, Richter R, Rose K, Franjević D (2020) Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys 948: 107-119. https://doi.org/10.3897/zookeys.948.52910
Skejo J, Medak K, Pavlović M, Kitonić D, Miko RJC, Franjević D (2020) The story of the Malagasy devils (Orthoptera, Tetrigidae): Holocerus lucifer in the north and H. devriesei sp. nov. in the south? ZooKeys 957: 1-15. https://doi.org/10.3897/zookeys.957.52565
Tumbrinck, J & Skejo, J. (2027) Taxonomic and biogeographic revision of the New Guinean genus Ophiotettix Walker, 1871 (Tetrigidae: Metrodorinae: Ophiotettigini trib. nov.), with the descriptions of 33 new species. In Telnov D, Barclay MVL, Pauwels OS (Eds) Biodiversity, biogeography and nature conservation in Wallacea and New Guinea (Volume III). The Entomological Society of Latvia, Riga, Latvia, 525-580.
The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.
Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.
By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.
On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!
***
Read more about the rationale of the Red List of Taxonomists project.
***
Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag.
The success of Classical Biological Control in the Western Paleartic ecozone is rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases
A CABI-led study has revealed that the success of Classical Biological Control (CBC) in Europe, North Africa and the Middle East is only rarely dependent on the released biological control agent, but more often on other factors, such as the target pest, its host plant, or the circumstances of the releases.
The research – published in the journal NeoBiota– suggests that the overall success of biological control introductions of insect predators and parasitoids against herbivorous insects in the Western Paleartic ecozone is comparable to the success of CBC worldwide. However, over 100 years of CBC in this region, has resulted in no overall rise in success in the fight against insect pests – including those of crops such as citrus, olive, potato, mulberry and various other fruits.
Lead author Dr Lukas Seehausen, together with colleagues from CABI Switzerland, the University of Lisbon and the University of Bordeaux, argue that a focus on life-history traits of the biological control agent to increase the chances of successful CBC is not fully justified and should be complemented with the consideration of traits regarding the pest and its host plant, as well as other aspects of CBC, such as climate and management – including ways in which CBC agents are released.
For example, if a CBC agent is released repeatedly against the same pest in different years and countries, the chances of successful establishment and control of the target increase. This is an indication for the importance of release strategies for the success of CBC programmes.
Dr Seehausen said, “What makes our study different from others is that we studied factors that may impact the outcome of CBC not independently of each other but using a holistic analysis, which reveals their relative importance within the complexity of CBC programmes.
“The results from this study should be understood as a first step to give the incentive for a holistic, rather than an independent consideration of factors affecting the success of CBC.”
By filtering data from the BIOCAT catalogue, the scientists found that 780 introductions of insects for biological control were undertaken in the Greater Western Palearctic ecozone between 1890 and 2010. This constituted 416 agent-target combinations.
The results showed that eight countries were responsible for more than two thirds (70.5%) of all introductions: Israel (16.3%), Italy (14.0%), Former USSR (10.1%), France (7.3%), Greece (7.1%), Spain (6.0%), Egypt (5.3%), and Cyprus (4.4%). Within these countries, the percentage of complete target control was very variable.
Overall, the study showed that while the success of agent establishment was 32%, the successful impact of single agents on their target was 18% and the success of complete control was 11%.
However, the success rates of agent establishment and target control were higher in CBC projects targeting pests of woody plants than pests of other types of plants.
A reason for this, the scientists say, might be that being perennial, trees provide a more stable and predictable environment when compared to herbaceous plants such as annual plants or crops.
In carrying out the research, Dr Seehausen and the team added 15 new explanatory variables including consideration of the biological control agent feeding strategy, host range and life-stage killed by the biological control agent.
Dr Seehausen explains, “We found that only a few CBC agent-related factors significantly influenced the success of CBC – suggesting that the reoccurring focus on agent-related traits is not justified.
“Our attention should be redirected to include lower trophic levels and other aspects of CBC – such as abiotic factors including climate and management.”
The scientists conclude by stressing that analysis of the entire BIOCAT catalogue, or an updated version including more factors, should lead to further insights and help to develop decision support tools to increase the success of CBC at all levels.
Original source:
Seehausen ML, Afonso C, Jactel H, Kenis M (2021) Classical biological control against insect pests in Europe, North Africa, and the Middle East: What influences its success? NeoBiota 65: 169-191. https://doi.org/10.3897/neobiota.65.66276
Contributors will enable the EU to take action to plug in the essential scientific knowledge to address insect declines
The ‘Red List of Taxonomists’ initiative, funded by the European Union, launches its registration portal, where professionals and citizen scientists are called to register on. The purpose is to build a database of European taxonomy experts in the field of entomology, the biological discipline dedicated to insects. The analysis of these data will elucidate the trends in available expertise, thereby forming the basis of key recommendations for policy makers to further allocate necessary efforts and funds to support taxonomists’ work and contribute to protecting European biodiversity and beyond.
Globally, insect populations have been catastrophically plummeting over the last decades. According to the first major Europe-wide survey of honeybee colonies, conducted in 2013, some European countries lost as many as one-third of their colonies every winter. On the other hand, estimates state, the European agriculture industry alone ‘owes’ at least €22 billion per year to honey bees and wild bees, in addition to many species from other insect orders, as together they ensure pollination for over 80% of crops and wild plants in Europe.
The health of European pollinators on species and population level and other insects essential in our ecosystems strongly relies on our ability to rapidly turn the growing awareness about these worrying trends into swift, decisive actions. These decisions are crucial to mitigate the negative impacts of these alarming trends in human activities, mainly industrial agriculture. Taxonomists – the people who can identify, discover and monitor insect species – have a decisive role to play.
Often specialised in specific insect groups, they can investigate the diversity and abundance of insects. To a great concern, the numbers of trained insect taxonomists seem also to be fast declining. There is the real danger of losing numerous species before we get the chance to even learn about their existence!
On a more positive note, while species extinction is an irreversible event, certain taxonomic expertise can be nourished and ‘brought back to life’ if only we have the data and analyses to bring to the attention of the relevant education institutions, governments and policy-makers, so that the necessary resources are allocated to education, training, career support and recognition.
This is how the ‘Red List of Taxonomists’ project, an initiative by the organisation uniting the most important and largest European natural science collections (CETAF), the world’s authority on assessing the risk of extinction of organisms: the International Union for Conservation of Nature (IUCN) and the scientific publisher with a long history in the biodiversity and ecology fields: Pensoft, and funded by the European Commission, comes into play. Launched earlier this year, the ‘Red List of Taxonomists’ aims to compile the very first inventory of taxonomic expertise for any group of organisms, understandably choosing the class of insects.
Bringing together scientists, research institutions and learned societies from across Europe, the project will compare the trends and extract recommendations to overcome the risks, while preserving and further evolving the expert capacity of this scientific community.
As partners of the project, CETAF and IUCN are mobilising experts from their respective networks to populate the ‘Red List of Taxonomists’ database. In parallel, Pensoft is extracting further data of authors, reviewers and editors from taxonomic publications across its portfolio of academic journals and books, in addition to major relevant databases working with scholarly literature.
To reach experts, including professionals not necessarily affiliated with partnering institutions, as well as citizen scientists, the team is now calling for European taxonomists to register via the newly launched ‘Red List of Taxonomists’ portal and provide their data by filling a short survey. Their data will not be publicly available, but it will be used for in-depth analyses and reports in the concluding stage of the project, scheduled for early 2022. The collection of the data is in full compliance with GDPR requirements.
***
Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists.
***
Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag.
Scientists from the Ruhr-University and the Bavarian State Collection of Zoology discovered that females of a South American species protrude a Y-shaped organ on their backs to release pheromones and attract males. Found in none of the over 2,500 species of praying mantises worldwide, the behaviour is reported for the first time in the peer-reviewed scientific Journal of Orthoptera Research.
“When I saw the maggot-like structures peeking out from the back of the praying mantis and then withdrew, I immediately thought of parasites that eat the animal from the inside, because that is not really uncommon in insects,”
says Frank Glaw, a reptile and amphibian expert from the Bavarian State Collection of Zoology, who discovered the unusual phenomenon.
However, it took specialists in this particular animal group to solve the riddle. Although the experts had seen nothing like this in praying mantises before either, they pointed out that there are other species of mantises, in which mostly unfertilised females release pheromones from a gland in the same part of the body (between the 6th and 7th tergite), in order to attract mates. The Y-shaped organ, which can stretch up to 6 mm in length, is in fact an advanced pheromone gland, which the insect controls with the help of hemolymph.
“We suspect that Stenophylla lobivertex can release the pheromones with the protrusible organ more efficiently and in a more targeted manner than other praying mantises,”
says Christian J. Schwarz, entomologist at the Ruhr-University.
“This can be very important, especially for rare species with a low population density, so that males can reliably find their females.”
Stenophylla lobivertex is a very rare species and lives hidden in the Amazon rainforests. Discovered only 20 years ago, the bizarre-looking and well-camouflaged animal has only been spotted a few times, and apparently only mates at night in the darkness.
***
Follow Journal of Orthoptera Research on Twitter and Facebook.
***
Publication:
Schwarz CJ, Glaw F (2021) The luring mantid: Protrusible pheromone glands in Stenophylla lobivertex (Mantodea: Acanthopidae). Journal of Orthoptera Research 30(1): 39-41. https://doi.org/10.3897/jor.30.55274
Earlier this year, a research article triggered a media frenzy by predicting that as a result of an ongoing rapid decline, nearly half of the world’s insects will be no more pretty soon
Query- and geographically-biased summaries; mismatch between objectives and cited literature; and misuse of existing conservation data have all been identified in the alarming study, according to Drs Atte Komonen, Panu Halme and Janne Kotiaho of the University of Jyväskylä (Finland). Despite the claims of the review paper’s authors that their work serves as a wake-up call for the wider community, the Finnish team explain that it could rather compromise the credibility of conservation science.
The first problem about the paper, titled “Worldwide decline of the entomofauna: A review of its drivers” and published in the journal Biological Conservation, is that its authors have queried the Web of Science database specifically using the keywords “insect”, “decline” and “survey”.
“If you search for declines, you will find declines. We are not questioning the conclusion that insects are declining,” Komonen and his team point out, “but we do question the rate and extent of declines.”
The Finnish research team also note that there are mismatches between methods and literature, and misuse of IUCN Red List categories. The review is criticised for grouping together species, whose conservation status according to the International Union for Conservation of Nature (IUCN) is Data Deficient with those deemed Vulnerable. By definition, there are no data for Data Deficient species to assess their declines.
In addition, the review paper is seen to use “unusually forceful terms for a peer-reviewed scientific paper,” as the Finnish researchers quote a recent news story published in The Guardian. Having given the words dramatic, compelling, extensive, shocking, drastic, dreadful, devastating as examples, they add that that such strong intensifiers “should not be acceptable” in research articles.
“As actively popularising conservation scientists, we are concerned that such development is eroding the importance of the biodiversity crisis, making the work of conservationists harder, and undermining the credibility of conservation science,” the researchers explain the motivation behind their response.
###
Original source:
Komonen A, Halme P, Kotiaho JS (2019) Alarmist by bad design: Strongly popularized unsubstantiated claims undermine credibility of conservation science. Rethinking Ecology 4: 17-19. https://doi.org/10.3897/rethinkingecology.4.34440
The last time so many previously unknown moths have been discovered at once in the best-studied continent was in 1887
Following a long-year study of the family of twirler moths, an Austrian-Danish research team discovered a startling total of 44 new species, including as many as 22 species inhabiting various regions throughout Europe.
Given that the Old Continent is the most thoroughly researched one, their findings, published in the open access journal ZooKeys, pose fundamental questions about our knowledge of biodiversity. Such wealth of new to science European moths has not been published within a single research article since 1887.
“The scale of newly discovered moths in one of the Earth’s most studied regions is both sensational and completely unexpected,” say authors Dr Peter Huemer, Tyrolean State Museum, and Ole Karsholt of the University of Copenhagen‘s Zoological Museum. To them, the new species come as proof that, “despite dramatic declines in many insect populations, our fundamental investigations into species diversity are still far from complete”.
The challenge of taxonomy
For the authors, it all began when they spotted what seemed like an unclassifiable species of twirler moth in the South Tyrolean Alps. In order to confirm it as a new species, the team conducted a 5-year study into the type specimens of all related species spread across the museum collections of Paris, London, Budapest and many in between.
To confirm the status of all new species, the scientists did not only look for characteristic colouration, markings and anatomical features, but also used the latest DNA methods to create unique genetic fingerprints for most of the species in the form of DNA barcodes.
What’s in a name?
A particular challenge for the researchers was to choose as many as 44 names for the new species. Eventually, they named one of the species after the daughter of one of the authors, others – after colleagues and many others – after the regions associated with the particular species. Megacraspedus teriolensis, for example, is translated to “Tyrolean twirler moth”.
Amongst the others, there is one which the scientists named Megacraspedus feminensisbecause they could only find the female, while another – Megacraspedus pacificus, discovered in Afghanistan – was dubbed “an ambassador of peace”.
Mysterious large twirler moths
All new moths belong to the genus of the large twirler moths (Megacraspedus) placed in the family of twirler moths (Gelechiidae), where the common name refers to their protruding modified mouthparts (labial palps).
The genus of the large twirler moths presents an especially interesting group because of their relatively short wings, where their wingspan ranges between 8 and 26 millimetres and the females are often flightless. While it remains unknown why exactly their wings are so reduced, the scientists assume that it is most likely an adaptation to the turbulent winds at their high-elevation habitats, since the species prefer mountain areas at up to 3,000 metres above sea level.
Out of the 85 documented species, however, both sexes are known in only 35 cases.
The scientists suspect that many of the flightless females are hard to spot on the ground. Similarly, caterpillars of only three species have been observed to date.
While one of the few things we currently know about the large twirler moths is that all species live on different grasses, Huemer and Karsholt believe that it is of urgent importance to conduct further research into the biology of these insects, in order to identify their conservation status and take adequate measures towards their preservation.
###
Original source:
Huemer P, Karsholt O (2018) Revision of the genus Megacraspedus Zeller, 1839, a challenging taxonomic tightrope of species delimitation (Lepidoptera, Gelechiidae). ZooKeys 800: 1-278. https://doi.org/10.3897/zookeys.800.26292
Middle Jurassic has always been considered as a mysterious ancient period full of ‘magical’ dinosaurs, pterosaurs and plants. However, when we think about the Jurassic landscape, we should take insects into consideration as well.
The lacewings, for example, are a graceful group famous for the lovely net-like veins on their wings, beautiful enough to stand the test of time, preserved as fossils. In addition, the wing spots on their wings form various patterns, which serve to tell us more about their adaptation to the particular environment.
Having carefully studied several pieces of compressed fossils of the large and distinct insects they found in Dohugou village, Inner Mongolia, Chinese scientists Hui Fang, Dong Ren, Jiaxi Liu and Yongjie Wang, College of Life Science, Capital Normal University, Beijing, discovered two species new to science.
Due to their complex, one-of-a-kind wing venations, all three of them were placed in the same genus (Laccosmylus) in the family Saucrosmylidae. Their descriptions, along with the redescription of another previously known species, are published in the open access journal ZooKeys.
“Fossil lacewing insects are much more abundant compared to living ones,” comment the authors.
“These large-sized fossil lacewing species reflect a high lacewing diversity in Middle Jurassic. Soon, they will help us reconstruct the wonderful environment of the Jurassic world.”
***
Original source:
Fang H, Ren D, Liu J, Wang Y (2018) Revision of the lacewing genus Laccosmylus with two new species from the Middle Jurassic of China (Insecta, Neuroptera, Saucrosmylidae). ZooKeys 790: 115-126. https://doi.org/10.3897/zookeys.790.28286