How to get people interested in invasive species?

While blacklists are an effective tool for preventing and managing new biological invasions, they don’t always raise public awareness of invasive alien species, a new study published in the open-access journal NeoBiota found. Important policy-making initiatives do not necessarily raise public awareness about biological invasions, and efforts should be more focused on supporting policy-making with well-planned communication campaigns, the research concludes.

Catchy news and viral videos work best to attract public attention to invasive alien species

Blacklists are one of the most common policy measures to limit biological invasions. They identify small groups of highly impactful invasive alien species: species introduced outside their native range that threaten biodiversity. By doing so, they inform key decision-makers, who then impose limitations or bans on their trade and introduction, or set requirements about specific actions to manage already established populations.

While they have been found to be effective at preventing and managing new biological invasions, we don’t know if blacklists actually raise public awareness of invasive alien species. In principle, they could do so, as they might attain a certain echo in the media and provide the general public with notorious examples of invasive alien species.

Coypu. Photo by Aurelio Perrone

In 2016, the European Union published the List of Invasive Alien Species of Union concern, which contains species that are banned from import, trade, and release in Europe. It had a certain echo in the media, and having come at a time where Internet searches are so pervasive that they can be used to measure public attention,  the Union List made a good case study for exploring blacklist impact on public awareness.

A research study, coordinated by Jacopo Cerri from the University of Primorska, Slovenia, and Sandro Bertolino from the University of Turin, Italy, explored if the publication of the Union List increased visits of the  Italian Wikipedia pages about invasive alien mammals, many of which were included in the list. Wikipedia is the largest online encyclopedia and a major source of information for motivated Internet users who go beyond search engines such as Google. As a comparison, the researchers used visits to Wikipedia pages about native mammals in Italy, and adopted a causal impact analysis to quantify differences.

The study found no effect of the publication of the Union lists over visits to Italian Wikipedia pages of invasive alien mammals, compared to pages about native mammals. After 2016, there were single peaks of visits to pages of some of the species, probably caused by viral videos and news about large-scale control initiatives or mass escapes from captivity. In one instance, peaks in visits aligned with news about the coypu – at the time, several national media outlets ran stories addressing the concerns of public administrations regarding the rodent’s impact on the stability of river banks. Similarly, a peak observed between late 2018 and February 2019 was likely caused by news about the release of 4,000 minks from a fur factory in Northern Italy, which attracted considerable attention in the national and regional media.

These attention peaks, however, did not last in time and don’t reflect a systematic change in public awareness about invasive alien species.

“Overall, our findings indicate that blacklists, despite having the potential to raise public awareness towards biological invasions, might fail to do so in practice,” the researchers conclude.

“Agencies who want to achieve this goal should rather develop tailored communication campaigns, or leverage on sensational news published in the media.”
 

Research article:

Cerri J, Carnevali L, Monaco A, Genovesi P, Bertolino S (2022) Blacklists do not necessarily make people curious about invasive alien species. A case study with Bayesian structural time series and Wikipedia searches about invasive mammals in Italy. NeoBiota 71: 113-128. https://doi.org/10.3897/neobiota.71.69422

Natural History Museum of Berlin’s journal Fossil Record started publishing on ARPHA Platform

Fossil Record – the paleontological scholarly journal of the Natural History Museum of Berlin (Museum für Naturkunde Berlin) published its first articles after moving to the academic publisher Pensoft and its publishing platform ARPHA Platform in late 2021. The renowned scientific outlet – launched in 1998 – joined two other historical journals owned by the Museum: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution, which moved to Pensoft back in 2014.

Fossil Record – the paleontological scholarly journal of the Natural History Museum of Berlin (Museum für Naturkunde Berlin) published its first articles after moving to the academic publisher Pensoft and its publishing platform ARPHA in late 2021. The renowned scientific outlet – launched in 1998 – joined two other historical journals owned by the Museum: Deutsche Entomologische Zeitschrift and Zoosystematics and Evolution, which moved to Pensoft back in 2014.

Published in two issues a year, the open-access scientific outlet covers research from all areas of palaeontology, including the taxonomy and systematics of fossil organisms, biostratigraphy, palaeoecology, and evolution. It deals with all taxonomic groups, including invertebrates, microfossils, plants, and vertebrates.

As a result of the move to ARPHA, Fossil Record utilises the whole package of ARPHA Platform’s services, including its fast-track, end-to-end publishing module, designed to appeal to readers, authors, reviewers and editors alike. A major advantage is that the whole editorial process, starting from the submission of a manuscript and continuing into peer review, editing, publication, dissemination, archiving and hosting, happens within the online ecosystem of ARPHA. 

As soon as they are published, the articles in Fossil Record are available in three formats: PDF, machine-readable JATS XML and semantically enriched HTML for better and mobile-friendly reader experience. 

The publications are equipped with real-time metrics on both article and sub-article level that allow easy access to the number of visitors, views and downloads for every article and each of it’s figures, tables or supplementary materials. In their turn, the semantic enhancements do not only allow for easy navigation throughout the text and quick access to cited literature and the article’s own citations, but also tag each taxon that appears in the paper to provide links to further information concerning its occurrences, genomics, nomenclature, treatments and more as available from various databases.      

The first five papers – now available on the brand new journal website powered by ARPHA – already demonstrate the breadth of topics covered by Fossil Record, including systematics, paleobiogeography, palaeodiversity and morphology, as well as the international appeal of the scholarly outlet. The articles are co-authored by collaborative research teams representing ten countries and spanning three continents: Europe, Asia and Africa.

***

About the Natural History Museum of Berlin:

The “Museum für Naturkunde – Leibniz Institute for Evolution and Biodiversity Science” is an integrated research museum within the Leibniz Association. It is one of the most important research institutions worldwide in the areas of biological and geological evolution and biodiversity.

The Museum’s mission is to discover and describe life and earth – with people, through dialogue. As an excellent research museum and innovative communication platform, it wants to engage with and influence the scientific and societal discourse about the future of our planet, worldwide. Its vision, strategy and structure make the museum an excellent research museum. The Natural History Museum of Berlin has research partners in Berlin, Germany and approximately 60 other countries. Over 700,000 visitors per year as well as steadily increasing participation in educational and other events show that the Museum has become an innovative communication centre that helps shape the scientific and social dialogue about the future of our earth. 

Cultivated and wild bananas in northern Viet Nam threatened by а devastating fungal disease

For over 100 years, Fusarium, one of the most important fungal plant pathogens, has affected banana production worldwide.

Fusarium is one of the most important fungal plant pathogens, affecting the cultivation of a wide range of crops. All over the world, thousands of farmers suffer agricultural losses caused by Fusarium oxysporum f. sp. cubense (referred to as Foc for short), which directly affects their income, subsistence, and nourishment.

As a soil-borne fungus, Foc invades the root system, from where it moves into the vascular tissue that gradually deteriorates, until eventually the plant dies. What makes it particularly hard to deal with is that, even 20 years after all infected plants and tissue are removed, spores of it still remain in the soil.

One industry significantly affected by Foc is global banana export, largely dependent on the cultivation of members of the Cavendish subgroup, which are highly susceptible to some of the Foc strains.

For over 100 years, the fungus has affected banana production worldwide. Researchers predict it will continue spreading intensively in Asia, affecting important banana-producing countries such as China, the Philippines, Pakistan, and Viet Nam.

For Viet Nam, predictions on the impact of Foc for the future are dramatic: an estimated loss in the banana production area of 8% within the next five years, and up to 71% within the next 25 years. In particular, the recent rise of the novel TR4 strain has resulted in worldwide anxiety about the future of the well-known Cavendish banana and many other cultivars. Fusarium oxysporum f. sp. cubense is, however, not limited to TR4 or other well-known strains, like Race 1 or Race 2; it is a species complex that plant pathologists are yet to fully disentangle. 

In Viet Nam, like in the rest of Asia, Africa, Latin America, and the Caribbean, most bananas are consumed and traded locally, supporting rural livelihood. This means that any reduction in crop harvest directly affects local people’s income and nourishment. 

It has thus become necessary to find out what are the individual species causing the Fusarium wilt among Vietnamese bananas. Only by understanding which species are infecting the cultivated bananas can concrete measures be taken to control the future spreading of the disease to other regions.

Using DNA analyses and morphological characterization, an international team of researchers from Viet Nam (Plant Resources Center, Vietnam National University of Agriculture), Belgium (Meise Botanic Garden, KU Leuven, Bioversity Leuven, MUCL) and the Netherlands (Naturalis Biodiversity Center) investigated the identity of the Fusarium wilt infections. They recently published their joint research in the open-access, peer-reviewed journal MycoKeys.

The study shows that approximately 3 out of 4 Fusarium infections of the northern Vietnamese bananas are caused by the species F. tardichlamydosporum, which can be regarded as the typical Race 1 infections. Interestingly, Foc TR4 is not yet a dominant strain in northern Viet Nam, as the species causing the disease – F. odoratissimum – only accounts for 10% of the Fusarium infections. A similar proportion of Fusarium infections is caused by the species Fusarium cugenangense – considered to cause Race 2 infections among bananas.More importantly, Fusarium wilt was not only found in cultivated bananas: the disease seemed to also affect wild bananas. This finding indicates that wild bananas might function as a sink for Fusarium wilt from where reinfections towards cultivars could take place.

Research article:

Le Thi L, Mertens A, Vu DT, Vu TD, Anh Minh PL, Duc HN, de Backer S, Swennen R, Vandelook F, Panis B, Amalfi M, Decock C, Gomes SIF, Merckx VSFT, Janssens SB (2022) Diversity of Fusarium associated banana wilt in northern Viet Nam. MycoKeys 87: 53-76. https://doi.org/10.3897/mycokeys.87.72941

Call for data papers describing datasets from Northern Eurasia in Biodiversity Data Journal

In collaboration with the Finnish Biodiversity Information Facility (FinBIF) and Pensoft Publishers, GBIF has announced a new call for authors to submit and publish data papers on Russia in a special collection of Biodiversity Data Journal (BDJ). The call extends and expands upon a successful effort in 2020 to mobilize data from European Russia.

GBIF partners with FinBIF and Pensoft’s Biodiversity Data Journal to streamline publication of new datasets about biodiversity from Northern Eurasia

Original post via GBIF

In collaboration with the Finnish Biodiversity Information Facility (FinBIF) and Pensoft Publishers, GBIF has announced a new call for authors to submit and publish data papers on Northern Eurasia in a special collection of Biodiversity Data Journal (BDJ). The call expands upon successful efforts to mobilize data from European Russia in 2020 and from the rest of Russia in 2021.

Until 30 June 2022, Pensoft will waive the article processing fee (normally €650) for the first 50 accepted data paper manuscripts that meet the following criteria for describing a dataset:

See the complete definition of these terms below.

Detailed instructions

Authors must prepare the manuscript in English and submit it in accordance with BDJ’s instructions to authors by 30 June 2022. Late submissions will not be eligible for APC waivers.

Sponsorship is limited to the first 50 accepted submissions meeting these criteria on a first-come, first-served basis. The call for submissions can therefore close prior to the deadline of 30 June 2022. Authors may contribute to more than one manuscript, but artificial division of the logically uniform data and data stories, or “salami publishing”, is not allowed.

BDJ will publish a special issue including the selected papers by the end of 2021. The journal is indexed by Web of Science (Impact Factor 1.225), Scopus (CiteScore: 2.0) and listed in РИНЦ / eLibrary.ru.

For non-native speakers, please ensure that your English is checked either by native speakers or by professional English-language editors prior to submission. You may credit these individuals as a “Contributor” through the AWT interface. Contributors are not listed as co-authors but can help you improve your manuscripts. BDJ will introduce stricter language checks for the 2022 call; poorly written submissions will be rejected prior to the peer-review process.

In addition to the BDJ instruction to authors, data papers must referenced the dataset by
a) citing the dataset’s DOI
b) appearing in the paper’s list of references
c) including “Northern Eurasia 2022” in the Project Data: Title and “N-Eurasia-2022“ in Project Data: Identifier in the dataset’s metadata.

Authors should explore the GBIF.org section on data papers and Strategies and guidelines for scholarly publishing of biodiversity data. Manuscripts and datasets will go through a standard peer-review process. When submitting a manuscript to BDJ, authors are requested to assign their manuscript to the Topical Collection: Biota of Northern Eurasia at step 3 of the submission process. To initiate the manuscript submission, remember to press the Submit to the journal button.

To see an example, view this dataset on GBIF.org and the corresponding data paper published by BDJ.

Questions may be directed either to Dmitry Schigel, GBIF scientific officer, or Yasen Mutafchiev, managing editor of Biodiversity Data Journal.

This project is a continuation of successful calls for data papers from European Russia in 2020 and 2021. The funded papers are available in the Biota of Russia special collection and the datasets are shown on the project page.

Definition of terms

Datasets with more than 7,000 presence records new to GBIF.org

Datasets should contain at a minimum 7,000 presence records new to GBIF.org. While the focus is on additional records for the region, records already published in GBIF may meet the criteria of ‘new’ if they are substantially improved, particularly through the addition of georeferenced locations.” Artificial reduction of records from otherwise uniform datasets to the necessary minimum (“salami publishing”) is discouraged and may result in rejection of the manuscript. New submissions describing updates of datasets, already presented in earlier published data papers will not be sponsored.

Justification for publishing datasets with fewer records (e.g. sampling-event datasets, sequence-based data, checklists with endemics etc.) will be considered on a case-by-case basis.

Datasets with high-quality data and metadata

Authors should start by publishing a dataset comprised of data and metadata that meets GBIF’s stated data quality requirement. This effort will involve work on an installation of the GBIF Integrated Publishing ToolkitBDJ will conduct its standard data audit and technical review. All datasets must pass the data audit prior to a manuscript being forwarded for peer review.

Only when the dataset is prepared should authors then turn to working on the manuscript text. The extended metadata you enter in the IPT while describing your dataset can be converted into manuscript with a single-click of a button in the ARPHA Writing Tool (see also Creation and Publication of Data Papers from Ecological Metadata Language (EML) Metadata. Authors can then complete, edit and submit manuscripts to BDJ for review.

Datasets with geographic coverage in Northern Eurasia

In correspondence with the funding priorities of this programme, at least 80% of the records in a dataset should have coordinates that fall within the priority areas of Russia, Ukraine, Belarus, Kazakhstan, Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan, Moldova, Georgia, Armenia and Azerbaijan. However, authors of the paper may be affiliated with institutions anywhere in the world.

***

Follow Biodiversity Data Journal on Twitter and Facebook to keep yourself posted about the new research published.

Unwelcome guests: International tourism and travel can be a pathway for introducing invasive species

International tourism can facilitate the dispersal of exotic species. A new analysis of data from tourism accommodations and exotic organism detections in New Zealand, published in NeoBiota, shows that levels of detection significantly correlated to international and domestic tourist movement, even with population levels taken into account. There was no detectable difference between the risk from international and domestic tourists, indicating that tourism as an activity correlates with the introduction and spread of exotic species.

Tourists, albeit unwittingly, may help such unwanted organisms spread further and conquer new lands – they can carry them over in their luggage or on their clothes and shoes. In 2011, a study from New Zealand found that, for every gram of soil on the footwear of aircraft passengers arriving from abroad, there were 2.5 plant seeds, 41 roundworms, 0.004 insects and mites, and many microorganisms, such as fungi that could cause plant diseases. Moreover, these organisms were alive, and some of them were known to be biosecurity threats. Importantly, tourism can introduce risk in two directions, namely from the arrival of international travellers and also the return of residents from international travel.

An important question, then, is to what degree they play a role in the spread of exotic organisms. A study, carried out by Dr Andrew Robinson of the Centre of Excellence for Biosecurity Risk Analysis at the University of Melbourne and Mark McNeill of AgResearch New Zealand, looks to answer that question.

To do so, the researchers compared data on the interceptions of exotic organisms in New Zealand against accommodation data for international and domestic tourists, factoring for the country’s population distribution. The study, recently published in the open-access journal NeoBiota, covered the period between 2011 and 2017, and the exotic organisms that were detected included insects, spiders, mites, snails, plants, and roundworms. 

Robinson and McNeill found a significant relationship between levels of incursion detection and tourism accommodation records: the number of nights spent in hotels significantly correlated to the detection of exotic pests for that period. Importantly, the study found no significant difference between the effect of international and domestic tourism, proving that even travel within the country can facilitate the spread of exotic species. A significant positive correlation was also found between the detection of exotic organisms and population numbers across different regions. 

“The core take-home message is that within-country tourism movements are significantly correlated to the detection of exotic pests,” the researchers explained. That is, tourists and returning residents bring bugs in, and both are implicated at spreading them once they are in the country. They suggest that biosecurity authorities should continue allocating resources to the management of invasive species and pests that get carried around by tourists and their activities. 

However, they also point to the biosecurity risk posed by other possible pathways for of exotic organisms, such as sea freight. A comparison between the different ways of introduction and dispersal would provide a better understanding of relative risk, they conclude.

Research article:

Robinson AP, McNeill MR (2022) Biosecurity and post-arrival pathways in New Zealand: relating alien organism detections to tourism indicators. NeoBiota 71: 51-69. https://doi.org/10.3897/neobiota.71.64618

Green backyards help increase urban climate resilience: Here is how

New study evaluates the effects of greenery on thermal comfort, biodiversity, carbon storage and social interactions.

Green spaces in cities have a number of positive effects: they’re good for our physical and mental health, they’re good for the environment, and they can even help fight off the effects of climate change.

To explore the impact of additional green structures in cities, Katja Schmidt and Ariane Walz, affiliated with the University of Potsdam, Germany, quantified their effects on different aspects such as thermal comfort, biodiversity, carbon storage and social interaction. Their study, published in the open-access, peer-reviewed journal One Ecosystem, combines knowledge from health research, ecology and socio-ecological research, and shows how the better we know a particular type of ecosystem, the better we can adapt to climate change.

Green residential courtyards in Potsdam. Photo by Jan Michalko, University of Potsdam

Pursuing a multi-method approach that ranged from local climate measurements to habitat and tree mapping, the authors compared four green residential courtyards in Potsdam. The spaces were similarly built, but had different ratios and sizes of features (lawns, flowerbeds, paths, playgrounds and allotments), as well as different tree and shrub population. 

While doing their research, Schmidt and Walz saw how even small differences in the green structure affect the provision of benefits, but one thing was clear: the greener courtyards yielded more benefits. Trees have the vital ability to cool down the environment and increase thermal comfort. Remarkably, the researchers report additional cooling effects of up to 11°C in the greener court yards. This means that residential green structures can prove of great value for human health during summertime heat, when asphalt and buildings make hot days even hotter. Considering the ageing demographic and the likely increase of heatwaves in the area, this is likely to have even greater health implications in the coming years. 

Microclimatic measurements in residential courtyards. Photo by Tobias Hopfgarten, University of Potsdam

Urban green spaces can also be an important factor in carbon storage, as urban soils and trees have the capacity to act as a sink for atmospheric carbon dioxide. The residential yards with more and larger trees, logically, have the power to store more carbon. This is where proper maintenance comes in: when yards are managed sustainably, trees live longer and can store more carbon.

“Considering the trend of increasing quantity and magnitude of extreme weather events and the vulnerability of urban areas, green spaces are known to provide great potential to increase urban climate resilience. Our work highlights the widespread positive effects of additional green structures in residential open spaces, a type of urban green space that is frequently understudied,” points out Dr. Schmidt.

As a conclusion, the researchers point out that if land owners and leaseholders receive incentives to commit to climate adaptation, and neighbourhoods come up with deliberate management strategies, these benefits could be further enhanced, contributing to a more sustainable urban development.

Research article:

Schmidt K, Walz A (2021) Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interaction. One Ecosystem 6: e65706. https://doi.org/10.3897/oneeco.6.e65706

An invasive plant may cost a Caribbean island 576,704 dollars per year

Guest blog post by Wendy Jesse

Coralita overgrowing vegetation. Photo from https://www.wur.nl/en/show/invasive-plants-in-caribbean-netherlands.htm

A recent study in One Ecosystem has estimated the severe loss of ecosystem service value as a result of the widespread invasion by the plant species Coralita (Antigonon leptopus) on the Caribbean island of St. Eustatius. The results illustrate the drastic impact that a single invader can have on the economy of a small island and inform policy makers about priority areas for invasive species management.

See for full article: Huisman, S., Jesse, W., Ellers, J., & van Beukering, P. (2021). Mapping the economic loss of ecosystem services caused by the invasive plant species Antigonon leptopus on the Dutch Caribbean Island of St. Eustatius. One Ecosystem6, e72881. https://doi.org/10.3897/oneeco.6.e72881

The invader: Coralita

Coralita is a fast-growing, climbing vine with beautiful pink or white flowers. Originally from Mexico, it was introduced as a popular garden plant to many Caribbean islands and around the world. Its fast-growing nature means that it can outcompete most native species for terrain, quickly becoming the dominant species and reducing overall diversity (Jesse et al. 2020, Nature Today 2020, Eppinga et al. 2021a). This is especially the case on St. Eustatius, where published ground surveys indicate that the plant already appears on 33 percent of the island.

Losses of ecosystem services

Coralita overgrowing cars. Photo by Rotem Zilber

We estimated the total terrestrial ecosystem service (ES) value on St. Eustatius to be $2.7 million per year by mapping five important terrestrial ecosystem services: Tourism, Carbon sequestration, Non-use (i.e., intrinsic biodiversity) value, Local recreational value, and Archeological value. Subsequently, we calculated Coralita-induced loss of ecosystem services under two realistic distributional scenarios of Coralita cover on the island: 3% of island dominantly covered (based on Haber et al. 2021, Nature Today 2021) and 36% dominant cover (if entire range would reach dominant coverage), causing an annual ES value loss of $39,804 and $576,704 respectively. The highest ES value (17,584 $/ha/year) as well as the most severe losses (3% scenario: 184 $/ha/year; 36% scenario: 1,257 $/ha/year) were located on the dormant Quill volcano; a highly biodiverse location with popular hiking trails for locals and tourists alike.

Consequences for policy makers and practitioners

Coralita blocking water a drainage channel. Photo by Wendy Jesse.

There is an urgent need for studies such as this one that help to bridge the gap between academia and policy planning, as these translate abstract numbers into intuitive information. Instead of invasive species being just a biological term, direct impacts on people’s value systems and sources of income immediately strike a chord. I experience this on a daily basis, because in addition to being a coauthor on this paper, I currently work as a policy employee in nature protection and management.

Coralita overgrowing archeological heritage on St. Eustatius. Photo from St. Eustatius Center for Archeological Research (SECAR)

This study helps to prioritize locations for invasive species prevention, management, eradication, and restoration. It is imperative that invasive species do not reach locations of high ecosystem service value. Management of isolated satellite patches of Coralita close to locations of high ES value will likely be most effective in halting the plant’s invasive spread (Eppinga et al. 2021b). Setting up a targeted monitoring and rapid response strategy, as well as legislation for biosecurity measures to prevent other invasive species from entering the island, would likely help to reduce impacts on the important ecosystem services on St. Eustatius.

References

Academic literature:

Eppinga, M. B., Haber, E. A., Sweeney, L., Santos, M. J., Rietkerk, M., & Wassen, M. J. (2021a). Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem. Biological Invasions, 1-19.

Eppinga M, Baudena M, Haber E, Rietkerk M, Wassen M, Santos M (2021b) Spatially explicit removal strategies increase the efficiency of invasive plant species control.

Ecological Applications 31 (3): 1‑13. https://doi.org/10.1002/eap.2257Haber E, Santos M, Leitão P, Schwieder M, Ketner P, Ernst J, Rietkerk M, Wassen M, Eppinga M (2021) High spatial resolution mapping identifies habitat characteristics of the invasive vine Antigonon leptopuson St. Eustatius (Lesser Antilles). Biotropica 53 (3): 941‑953. https://doi.org/10.1111/btp.12939

Jesse, W. A., Molleman, J., Franken, O., Lammers, M., Berg, M. P., Behm, J. E., … & Ellers, J. (2020). Disentangling the effects of plant species invasion and urban development on arthropod community composition. Global change biology26(6), 3294-3306.

Blog posts on Nature Today website:

van Maanen, G. Molleman, J., Jesse, W.A.M. (2020) Drastic effects of coralita on the biodiversity of insects and spiders. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=26339

Dutch Caribbean Nature Alliance (2021) Using satellite imagery to map St. Eustatius’ coralita invasion. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=28317

In the Atlantic Forest, the lowland tapir is at risk of extinction

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. The main long-term threat to their well-being is population isolation, as hunting and highways keep populations away from each other. Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study published in the open-access journal Neotropical Biology and Conservation.

Lowland tapir populations in the Atlantic Forest in South America are at risk of almost complete disappearance, scientists have estimated. Weighing up to 250 kg, the animal can adapt to most habitats in South America—but its populations continue to decline across its range.

Today, its survival is seriously threatened: it can be found in just 1.78% of its original distributional range in the Atlantic Forest biome, which covers parts of Brazil, Argentina and Paraguay. The main long-term threat to its well-being is population isolation, as hunting and highways keep populations away from each other.

Lowland tapir. Photo by Patricia Medici

Urgent measures need to be taken to connect isolated populations and ensure the long-term conservation of tapirs, warn the authors of a new study on the distribution and conservation status of lowland tapirsin the South American Atlantic Forest, published in the open-access journal Neotropical Biology and Conservation

The research was done by Kevin Flesher, PhD, researcher at the Biodiversity Study Center, Michelin Ecological Reserve, Bahia, and Patrícia Medici, PhD, coordinator of the Lowland Tapir Conservation Initiative, a project developed by the Institute for Ecological Research in Brazil, and chair of the Tapir Specialist Group at the Species Survival Commission in the International Union for Conservation of Nature.

 “Of the 48 tapir populations identified during the study, between 31.3% and 68.8% are demographically unviable (low number of individuals), and between 70.8% and 93.8% of the populations are genetically unviable (low gene flow). Only 3-14 populations are still viable in the long run when both criteria are considered. The evidence suggests that with the appropriate conservation actions, the lowland tapir could be broadly distributed throughout the Atlantic Forest,” says Kevin Flesher. 

Lowland tapir. Photo by Alexander Blanco

“Tapirs have low reproductive potential, including a long reproductive cycle with the birth of just one young after a gestation period of 13-14 months and intervals of up to three years between births. Our populational simulations clearly show how, in the case of small populations, even the loss of a single individual per year can result in rapid extinction of an entire local population,” adds Medici. 

Lowland tapir. Photo by Bill Konstant

Kevin Flesher dedicated 15 years to visiting 93 reserves in the Atlantic Forest, talking to people and analyzing 217 datasets, before he compiled the necessary data to design conservation actions that can ensure the survival of tapirs in the area. 

The states of São Paulo and Paraná in Brazil have the largest number of remaining populations: 14 and 10, respectively. The two largest populations are in Misiones, Argentina, and in the neighboring Iguaçu and Turvo reserves, in Paraná and Rio Grande do Sul, Brazil.

“As far as our knowledge goes, there is no evidence of movement of tapirs between these populations,” points out Medici.

The distance between population fragments, however, is not what is stopping them.

“The central problem is the multiple threats they face while crossing the habitat,” explains Flesher. Highways are one major obstacle that limits the access of tapirs to forests with adequate habitat. “For example, the heavy traffic on highway BR-101 (which cuts the Brazilian Atlantic Forest from North to South) is a death trap to wildlife. Tapirs often die when attempting to cross it,” explains Medici. 

The construction of highways and expansion of traffic in and around natural areas is a serious threat to large tapir populations that might otherwise have the chance to thrive, like those in Misiones, Argentina, and Serra do Mar, Brazil. 

“Roadkill is a significant cause of death in six of the eight reservations in which highways cross tapir populations, and the expansion of the roadway grid in the country threatens to cause population fragmentation in at least four populations,” points out Flesher. This is why finding ways to allow tapirs to cross highways safely is an urgent conservation priority.

Lowland tapir. Photo by Patricia Medici

The results of the study, however, give cause for “cautious optimism” for the future of tapirs in the area: after decades of dedicated conservation efforts, the situation is starting to improve. 

“Despite these continuing challenges for tapir conservation, most populations appear to be stable or increasing and the conservation outlook for the species is better than several decades ago, when the first efforts to protect the species began,” Kevin Flesher concludes.

Research article:

Flesher KM, Medici EP (2022) The distribution and conservation status of Tapirus terrestris in the South American Atlantic Forest. Neotropical Biology and Conservation 17(1): 1-19. https://doi.org/10.3897/neotropical.17.e71867

New rainfrog species named in honor of Greta Thunberg

The Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for new-to-science species. The funds raised are to aid their conservation.

In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species. The funds raised at the auction benefited the conservation of the newly recognized species. It is estimated that about 100 new species are discovered each year.

The scientific article officially describing and naming the new species, Pristimantis gretathunbergae, was published in Pensoft’s scientific journal ZooKeys.

Greta Thunberg, Sweden at the Annual Meeting 2019 of the World Economic Forum in Davos, January 25, 2019. Copyright by World Economic Forum / Manuel Lopez

The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). The two have collaborated for 10 years in Panama and have published eight scientific articles together and described 12 new species.

The team found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation. The Chucanti reserve was established by the Panamanian conservation organization ADOPTA with support from Rainforest Trust.

The Greta Thunberg Rainfrog exhibits distinctive black eyes—unique for Central American rainfrogs. Its closest relatives inhabit northwestern Colombia. Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. The Chucanti Reserve where the frog was first found is part of a growing network of natural parks and preserves championed by the Panamanian Government.

Greta Thunberg’s rainfrog, Pristimantis gretathunbergae. Photo by Konrad Mebert

The Rainforest Trust auction winner wanted to name the frog in honor of Greta Thunberg and her work in highlighting the urgency in preventing climate change. Her “School Strike for Climate” outside the Swedish parliament has inspired students worldwide to carry out similar strikes called Fridays for Future. She has impressed global leaders and her work is drawing others to action for the climate.

The plight of the Greta Thunberg Rainfrog is closely linked to climate warming, as rising temperatures would destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years. Deadly chytrid fungus pose additional threats for its amphibians. Conservation of the remaining habitat is critical to ensure the survival of the frog. The important work in Panama by ADOPTA and Rainforest Trust globally to protect rainforests is critical to the survival of this frog and many other endangered species.

Research article:

Mebert K, González-Pinzón M, Miranda M, Griffith E, Vesely M, Schmid PL, Batista A (2022) A new rainfrog of the genus Pristimantis (Anura, Brachycephaloidea) from central and eastern Panama. ZooKeys 1081: 1–34. https://doi.org/10.3897/zookeys.1081.63009

First tarantula to live in bamboo stalks found in Thailand

A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.

Guest blog post by Dr. Narin Chomphuphuang

Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.

Mae Tho, Mueang Tak district, Tak province, in Thailand, where the newly described tarantula was discovered. Photo by Narin Chomphuphuang

The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.

We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.

The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus. 

Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang

In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.

“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.

Finding the new tarantula. Video by JoCho Sippawat

The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.

The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities. 

Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat

Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.

What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.

Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang

“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.

Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.

Research article:

Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876