Celebrating 30 years of scholarly publishing at Pensoft!

As we celebrate the 30th anniversary of Pensoft, we are asking ourselves: What’s a tree without its roots? Here, we’ll tell you the story of Pensoft.

On this occasion full of sweet memories, we are also inviting you to complete this 3-minute survey. We would deeply appreciate your invaluable feedback!

It was in late 1992 when biologist and ecologist Prof Dr Lyubomir Penev in a collaboration with his friend Prof. Sergei Golovatch established Pensoft: a scholarly publisher with the ambition to contribute to novel and even revolutionary methods in academic publishing by applying its own approach to how science is published, shared and used. Inspired by the world’s best practices in the field, Pensoft would never cease to view the issues and gaps in scholarly publishing in line with its slogan: “by scientists, for scientists”.

As we celebrate the 30th anniversary of Pensoft, we are asking ourselves: What’s a tree without its roots? 

That’s why we’ve put up an attractive timeline of Pensoft’s milestones on our website, and complemented it with some key figures, in an attempt to translate those years into numbers. Yet, one can say only that much in figures. Below, we’ll give a bit more context and background about Pensoft’s key milestones.

1994: Pensoft publishes its first book & book series

In time for New Year’s Day in 1994, we published the first book bearing the name of Pensoft. The catalogue of the sheet weaver spiders (Lyniphiidae) of Northern Asia did not only set the beginning of the publishing activities of Pensoft, but also started the extensive Pensoft Series Faunistica, which continues to this day, and currently counts over 120 titles.

2003: Pensoft joins its first EU-funded research project 

By 2003, we were well-decided to expand our activities toward participation in collaborative, multinational projects, thereby building on our mission to shed light and communicate the latest scientific work done. 

By participating in the FP6-funded project ALARM (abbreviation for Assessing LArge-scale environmental Risks with tested Methods), coordinated by Dr. Joseph Settele from  the Helmholtz Centre for Environmental Research (Germany), we would start contributing to the making of science itself in close collaboration with another 67 institutions from across Europe. Our role at ALARM during the five years of the duration of the project was to disseminate and communicate the project outcome. At the end of the project, we also produced the highly appreciated within the community Atlas of Biodiversity Risk. 

As for today, 19 years later, Pensoft has taken part in 40 research projects as a provider of various services ranging from data & knowledge management and next-generation open access publishing; to communication, dissemination and (web)design; to stakeholder engagement; consultations; and event and project management. 

Our project activities culminated last year, when we became the coordinator of a large and exciting BiCIKL project, dedicated to access to and linking of biodiversity data along the entire data and research life cycle. 

2008: Pensoft launches its first scholarly journal to revolutionise & accelerate biodiversity research

Website: https://zookeys.pensoft.net/

Openly accessible and digital-first since the very start, the ZooKeys journal was born on a sunny morning in California during the Entomological Society of America meeting in 2007, when Prof Lyubomir Penev and his renowned colleague Dr Terry Erwin from the Smithsonian Institution agreed over breakfast that zoologists from around the world could indeed use a new-age taxonomic journal. What the community at the time was missing was a scholarly outlet that would not only present a smooth fast track for their research papers, while abiding by the highest and most novel standards in the field, but do so freely and openly to any reader at any time and in any place. Fast forward to 2021, ZooKeys remains the most prolific open-access journal in zoology.

With over 1,100 volumes published to date, ZooKeys is one of our most renowned journals with its own curious and intriguing history. You can find more about it in the celebratory blog post we published on the occasion of the journal’s 1,000th volume in late 2020.

At the time of writing, Pensoft has 21 journals under its own belt, co-publishes another 16, and provides its self-developed journal management platform ARPHA to another 35 scholarly outlets.

2010a: Pensoft launches its first journal publishing platform

By 2010, we realised that the main hurdle holding our progress as a next-age publisher of scientific knowledge was posed by the technology – or lack thereof –  underlying the publishing process. We figured that – in our position of users – we were best equipped to figure what exactly this backbone structure should be made of.

This is when we released the publishing platform TRIADA, which was able to support both the editorial and the publication processes at our journals. This was also the point in time when we added “technology provider” to the Pensoft’s byline. Surely, we had so many ideas in our mind and TRIADA was only the beginning!

2010b: In the 50th issue of ZooKeys, Pensoft publishes the first semantically enhanced biodiversity research papers

Explore the 50th ZooKeys issue.

Later the same year, TRIADA let us write some history. The 50th volume of ZooKeys wasn’t only special because of its number. It contained the first scholarly papers in the study of biodiversity featuring semantic enrichments. 

The novelty that keeps a taxon only a click away from a list of related data, including its occurrences, genomics data, treatments, literature etc. is a feature that remains a favourite to our journals’ users to this very day. Unique to date, this workflow is one of the many outcomes of our fantastic long-time collaboration and friendship with Plazi.

2011: Journal of Hymenoptera Research becomes the first society journal to move to Pensoft

Website: https://jhr.pensoft.net/

Three years after the launch of the very first Pensoft journal, we received a request from the International Society of Hymenopterists who wanted for their own journal: the Journal of Hymenoptera Research to follow the example of ZooKeys and provide to their authors, editors and readers a similar set of services and features designed to streamline biodiversity knowledge in a modern, user-friendly and highly efficient manner. 

Ever since, the journal has been co-published by the Society and Pensoft, and enjoyed growing popularity and appeal amongst hymenopterists from around the world.

Impact Factor and CiteScore trend for Journal of Hymenoptera Research since 2015.

2013: Pensoft replaces TRIADA with its own in-house built innovative ARPHA Platform

Website: https://arphahub.com/

As we said, TRIADA was merely the crude foundation of what was to become the ARPHA publishing platform: a publishing solution providing a lot more than an end-to-end entirely online environment to support the whole publishing process on both journal and article level.

On top of that, ARPHA’s publishing package includes a variety of automated and manually provided services, web service integrations and highly customisable features. With all of those, we aimed at one thing only: create a comprehensive scholarly publishing solution to our own dearest journals and all their users.

2013b:  Pensoft develops an XML-based writing tool

Website: https://arpha.pensoft.net/

Having just unveiled ARPHA Platform, we were quite confident that we have developed a pretty all-in publishing solution. Our journals would be launched, set up, hosted and upgraded safely under our watchful eye, while authors, editors and reviewers would need to send not a single email or a file outside of our collaborative environment from the moment they submit a manuscript to the moment they see it published, indexed and archived at all relevant databases. 

Yet, we could still spot a gap left to bridge. The Pensoft Writing Tool (or what is now known as the ARPHA Writing Tool or AWT) provides a space where researchers can do the authoring itself prior to submitting a manuscript straight to the journal. It all happens within the tool, with co-authors, external collaborators, reviewers and editors all able to contribute to the same manuscript file. Due to the XML technology underlying AWT, various data(sets) and references can be easily imported in a few clicks, while a list of templates and content management features lets researchers spend their time and efforts on their scientific work rather than format requirements.

2015: Pensoft launches the open-science RIO Journal

Website: https://riojournal.com/

Six years ago, amid heated discussions over the pros and cons of releasing scientific knowledge freely to all, we felt it’s time to push the boundaries even further. 

No wonder that, at the time, a scholarly journal with the aim to bring to light ‘alternative’ research outputs from along the whole research process, such as grant proposals, project and workshop reports, data management plans and research ideas amongst many others, was seen as quite brave and revolutionary. Long story short, a year after its launch, RIO earned the honorary recognition from the Scholarly Publishing and Academic Resources Coalition (SPARC) to be named an Open Science Innovator.

Learn about the key milestones and achievements at RIO Journal to date – in addition to its future goals – in the special blog post and the editorial published on the occasion of the journal’s fifth anniversary.

2016: Pensoft provides ARPHA Platform as a white-label journal publishing solution for the first time

Led by our intrinsic understanding for scholars and smaller publishers, we saw the need of many journals and their owners to simultaneously secure a user-friendly and sustainable publishing solution for their scientific outlets. This is why we decided to also offer our ARPHA Platform as a standalone package of technology, services and features, dissociated with Pensoft as a publisher. This option is particularly useful for university presses, learned societies and institutions who would rather stick to exclusivity when it comes to their journal’s branding and imprint.

The first to seek out this publishing solution of ours was The Vilnius Gediminas Technical University Press and its Business: Theory and Practice journal.

2017: Pensoft launches its conference-dedicated platforms for abstracts and proceedings 

Website: https://ap.pensoft.net/

Another step forward to encompassing the whole spectrum of research outputs was to take care after conference materials: proceedings and abstracts. Once again, our thinking was that all scientific work and efforts need to be made openly available, accessible, reusable and creditable. 

Both ARPHA Conference Abstracts and ARPHA Proceedings allow for organisers to conveniently bring the publications together in a conference-branded collection, thereby providing a one-stop permanent access point to all content submitted and presented at a particular event, alongside associated data, images, videos and multimedia, video recordings of conference talks or graphic files of poster presentations. 

Publications at both platforms benefit from all key advantages available to conventional research papers at a Pensoft journal, such as registration at Crossref and individual DOI; publication in PDF, semantically enhanced HTML and data-minable XML formats; indexing and archiving at multiple major databases; science communications services.

2019: Pensoft develops the OpenBiodiv Knowledge Graph

As firm believers in the power and future of linked and FAIR data, at Pensoft we realise there is still a great gap in the way biodiversity data is collated, stored, accessed and made available to researchers and key stakeholders for further reuse. 

In fact, this is an area within biodiversity research that is in dire need of a revolutionary mechanism to provide a readily available and convenient hub that allows a researcher to access all related data via multi-directional links interconnecting various and standardised databases, in accordance with the Web 2.0 principles.

As the first step in that direction, in 2019, we launched the OpenBiodiv Knowledge Graph, which began to collate various types of biodiversity data as extracted from semantically enhanced articles published by Pensoft and taxonomic treatments harvested by Plazi. 

Since then, the OpenBiodiv Knowledge Graph has evolved into the Open Biodiversity Knowledgement Management System (OBKMS), which also comprises a Linked Open Dataset, an ontology and а website. Our work on the OBKMS continues to this day, fueled by just as much enthusiasm as in those early days in 2019.

2020: Pensoft launches ARPHA Preprints

By 2020, a number of factors and issues that had long persisted within scholarly publishing and academia had already triggered the emergence of multiple preprint servers. Yet, the onset of the unprecedented for our age COVID-19 pandemic, seemed like the final straw that made everyone realise we needed to start uncovering early scientific work, and we needed to do that fast.

At the time, we had already been considering applying the Pensoft approach to preprints. So, we came up with a solution that could seamlessly blend into our existing infrastructure.

Offered as an opt-in service to journals published on the ARPHA Platform, ARPHA Preprints allows for authors to check a box and post their manuscripts as a preprint as they are filling in the submission form at a participating journal. 

Learn more about ARPHA Preprints on the ARPHA blog.

2021a: RIO Journal expands into a project-driven knowledge hub

Ever since its launch, RIO had been devised as the ultimate scholarly venue to share the early, intermediate and final results of a research project. While collections at the journal had already been put in good use, we still had what to add, so that we could provide a one-stop place for consortia to permanently store their outputs and make them easily discoverable and accessible long after their project had concluded. 

With the upgraded collections, their owners received the oppotunity to also add various research publications – including scholarly articles published elsewhere, author-formatted documents and preprints. In the former case, the article is visualised within the collection at RIO via a link to its original source, while in the latter, it is submitted and published via ARPHA Preprints. 

Learn more about the upgraded collections module on our blog and explore the collections on RIO’s website. 

Research projects with collections in RIO Journal.

2021b: Pensoft becomes a coordinator of the BiCIKL project 

Over the years, we have been partnering with many like-minded innovators and their institutions from across the natural science community. Surely, we hadn’t successfully developed all those technologies and workflows without their invaluable feedback and collaborations. 

In 2021, our shared passion and vision about the future of research data availability and usage culminated in the project BiCIKL (abbreviation for Biodiversity Community Integrated Knowledge Library), which was granted funding by the European Commission and will run until April 2024.

Within BiCIKL, our team of 14 European institutions are deploying and improving our own and partnering infrastructures to bridge gaps between each other’s biodiversity data types and classes with the ultimate goal to provide flawless access to data across all stages of the research cycle. By the end of the project, together we will have created the first-of-its-kind Biodiversity Knowledge Hub, where a researcher will be able to retrieve a full set of linked and open biodiversity data.

Naturally, being a coordinator of such a huge endeavour towards revolutionising biodiversity science is a great honour by itself. 

For us, though, this project has a special place in our hearts, as it perfectly resonates with the very reason why we are here: publishing and sharing science in the most efficient and user-friendly manner.

Visit the BiCIKL website, explore the news section and follow @BiCIKL_H2020 on Twitter.

To stay up to date with the highlights from our various activities at Pensoft, follow us onTwitter,Facebook and LinkedIn

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Dr. Matthew L. Niemiller’s team found individuals of the Shelta Cave Crayfish in 2019 and 2020 excursions into Shelta Cave – its only home.

HUNTSVILLE, Ala. (June 1, 2022) – A small, rare crayfish thought to be extinct for 30 years has been rediscovered in a cave in the City of Huntsville in northern Alabama by a team led by an assistant professor at The University of Alabama in Huntsville (UAH).

Dr. Matthew L. Niemiller’s team found individuals of the Shelta Cave Crayfish, known scientifically as Orconectes sheltae, in 2019 and 2020 excursions into Shelta Cave – its only home.

The Shelta Cave Crayfish is known to exist only in Shelta Cave. Courtesy Dr. Matthew L. Niemiller

Dr. Niemiller, an assistant professor of biological sciences at UAH, a part of the University of Alabama System, is co-author of a paper on the findings in the journal Subterranean Biology. Besides Dr. Niemiller, authors are UAH’s Katherine E. Dooley and K. Denise Kendall Niemiller, and Nathaniel Sturm of the University of Alabama.

The crayfish’s home is a 2,500-foot cave system that’s owned and managed by the National Speleological Society (NSS) and is unobtrusively located beneath the organization’s national headquarters in northwest Huntsville and is surrounded by subdivisions and bustling roadways.

Map of Shelta Cave showing the distribution of aquatic habitat during high water levels and the location of Shelta Cave Crayfish observations (black crayfish symbol) during the study. Map modified with permission of the Alabama Cave Survey.

“The crayfish is only a couple of inches long with diminutive pincers that are called chelae,” Dr. Niemiller says. “Interestingly, the crayfish has been known to cave biologists since the early 1960s but was not formally described until 1997 by the late Dr. John Cooper and his wife Martha.”

But the aquatic ecosystem, including the Shelta Cave Crayfish, crashed sometime in the early 1970s. The crash may be related to a gate that was built to keep people out of the cave and yet still allow a grey bat maternity population to still move freely in and out.

Even before the decline in the aquatic cave community, the Shelta Cave Crayfish was never common compared to the other two species, Southern Cave Crayfish (Orconectes australis) and Alabama Cave Crayfish (Cambarus jonesi).

“To the best of our knowledge, only 115 individuals had been confirmed from 1963 through 1975. Since then, only three have been confirmed – one in 1988 and the two individuals we report in 2019 and 2020,” Dr. Niemiller says.

“After a couple of decades of no confirmed sightings and the documented dramatic decline of other aquatic cave life at Shelta Cave, it was feared by some, including myself, that the crayfish might now be extinct.”

While it’s encouraging that the Shelta Cave Crayfish still persists, he says scientists still haven’t rediscovered other aquatic species that once lived in the cave system, such as the Alabama Cave Shrimp and Tennessee Cave Salamander. 

“The groundwater level in Shelta Cave is the result of water that works its way naturally through the rock layers above the cave – called epikarst – from the surface,” says Dr. Niemiller. “However, urbanization in the area above the cave system may have altered rates at which water infiltrates into the cave and also increased rates of pollutants, such as pesticides and heavy metals entering the cave system.”

The crayfish was rediscovered during an aquatic survey aimed toward documenting all life that encountered in the cave system.

“I really wasn’t expecting to find the Shelta Cave Crayfish. My students, colleagues and I had visited the cave on several occasions already leading up to the May 2019 trip,” Dr. Niemiller says. “We would be fortunate to see just a couple of Southern Cavefish and Southern Cave Crayfish during a survey.”

Dr. Matthew L. Niemiller snorkels in Shelta Cave, where a species of crayfish believed to be extinct was rediscovered. Photo by Amata Hinkle

While snorkeling in about 15 feet of water in North Lake located in the Jones Hall section of the cave, Dr. Niemiller spotted a smaller-sized cave crayfish below him.

“As I dove and got closer, I noticed that the chelae, or pincers, were quite thin and elongated compared to other crayfish we had seen in the cave,” he says. “I was fortunate to swoop up the crayfish with my net and returned to the bank.”

“The second Shelta Cave Crayfish that we encountered was in August 2020 in the West Lake area,” he says.

The team had searched much of the area and didn’t see much aquatic life. As they started to make their way out the lake passage to return to the surface, Nate Sturm, a master’s student in biology at the University of Alabama who had accompanied the lab for the trip, noticed a small white crayfish in an area that the team had previously walked through.

To aid identification, the team analyzed short fragments of mitochondrial DNA in the tissue samples collected.

“We compared the newly generated DNA sequences with sequences already available for other crayfish species in the region,” Dr Niemiller says. “A challenge we faced was that no DNA sequences existed prior to our study for the Shelta Cave Crayfish, so it was a bit of a process of elimination, so to speak.”

Outside of the dissertation work done by Dr. Cooper, little about the life history and ecology of the species is known.

 “Groundwater is critically important not just for the organisms that live in groundwater ecosystems, but for human society for drinking water, agriculture, etc.,” Dr. Niemiller says.

“The organisms that live in groundwater provide important benefits, such as water purification and biodegradation,” he says. “They also can act like ‘canaries in the coal mine,’ indicators of overall groundwater and ecosystem health.” 

Research article:

Dooley KE, Niemiller KDK, Sturm N, Niemiller ML (2022) Rediscovery and phylogenetic analysis of the Shelta Cave Crayfish (Orconectes sheltae Cooper & Cooper, 1997), a decapod (Decapoda, Cambaridae) endemic to Shelta Cave in northern Alabama, USA. Subterranean Biology 43: 11-31. https://doi.org/10.3897/subtbiol.43.79993

About The University of Alabama in Huntsville

Launched from America’s quest to conquer space, The University of Alabama in Huntsville is one of America’s premier doctoral-granting, research-intensive universities. Located in the second largest research park in the United States, UAH has robust capabilities in astrophysics, cybersecurity, data analytics, logistics and supply chain management, optical systems and engineering, reliability and failure analysis, rotorcraft and unmanned systems, severe weather, space propulsion and more. UAH prepares students for demanding positions in engineering, the sciences, business, nursing, education, the arts, humanities and social sciences.

Read the full press release by The University of Alabama in Huntsville.

Follow Subterranean Biology on Facebook and Twitter.

More and more people are becoming aware of the dangers posed by invasive hornets

A study published in the open access journal NeoBiota reveals that citizens and stakeholders are becoming more and more aware of the Asian yellow-legged hornet

Wasps and hornets have a remarkable capacity of surviving transportation and establishing invasive populations in new areas. In some cases, this can generate massive environmental and socio-economic impacts. Such is the case of the Asian yellow-legged hornet (Vespa velutina), which has been spreading throughout Europe and worldwide, threatening to seriously impact beekeeping.

However, research shows that such invasions do not go unnoticed. A team of researchers working on the Asian yellow-legged hornet in Italy (Dr Jacopo Cerri from the University of Primorska, Slovenia, and Dr Simone Lioy, Prof. Marco Porporato and Prof. Sandro Bertolino, from Turin University, Italy) discovered that citizen awareness about invasive hornets is increasing

Asian yellow-legged hornet (Vespa velutina) attacking a colony of honey bees (Apis mellifera) in Italy. Photo by Prof. Marco Porporato

Moreover, they found that the relevant stakeholders – such as beekeepers – are aware of the hornet’s impacts. They consider the Asian yellow-legged hornet as one of the major causes of honey bee decline in Italy, comparing its effects to those of pesticides, and believing it causes more damage than diseases or other native insects.

To evaluate public awareness of this invasive hornet,the researchers adopted an innovative methodology, which they describe in a paper in the open-access journal NeoBiota. In addition to surveying beekeepers, the authors also analysed Internet searches, focusing on Google queries and visits to relevant Wikipedia pages.

Honey bee. Photo by Andy Murray, CC BY-SA 2.0, via Wikimedia Commons

The team found that beekeepers stayed up to date with information on the Asian yellow-legged hornet thanks to a wide range of different channels, such as the Internet, specialized magazines, and activities with other members of their community. Interestingly, they found that conventional media and mailing lists seemed to be of little contribution to knowledge on this species.

With high reproductive potential and no specialized predators, the Asian yellow-legged hornet predates intensively upon the western honey bee, which could decrease pollination, undermine honey production and inflict consequences for the overwinter survival of colonies. It also limits the foraging activity of honey bees by determining a “foraging paralysis”, a state in which honey bees do not leave the colony, fearing its predation. On top of that, as the species builds its nests mainly in or near urban areas, it poses a risk of stings to people, which in some cases could lead to fatalities.

An increased consciousness in citizens and stakeholders will hopefully lead to a higher number of ‘aware eyes’ able to spot invasive hornets in different environments, the researchers explain. Timely reporting of their presence would allow the speedy activation of more appropriate management measures, containing any possible damages before it’s too late.

Research article:       

Cerri J, Lioy S, Porporato M, Bertolino S (2022) Combining surveys and on-line searching volumes to analyze public awareness about invasive alien species: a case study with the invasive Asian yellow-legged hornet (Vespa velutina) in Italy. NeoBiota 73: 177-192. https://doi.org/10.3897/neobiota.73.80359

Pets or threats? Goldfish might be harmful for biodiversity

Goldfish pose a triple threat: not only are they readily available, but they combine insatiable appetites with bold behaviour

Invasive species are one of the leading causes of global biodiversity loss, and the pet trade is responsible for a third of all aquatic invasive species. Pet owners releasing unwanted pets into the wild is a major problem. Whilst many believe this is a humane option, a new research suggests that attempting to ‘save’ the life of a goldfish could in fact lead to catastrophic outcomes for native biodiversity.

To better understand the ecological risks posed by species within the pet trade, the researchers focused on the two most commonly traded fish species in Northern Ireland: goldfish and the white cloud mountain minnow.

Photo by Jeff-o-matic under a CC BY-NC 2.0 license

The globally popular goldfish was first domesticated over a thousand years ago and has since established non-native populations around the world. The white cloud mountain minnow on the other hand is a species with a limited invasion history to date.

This study, published in NeoBiota, developed a new method for assessing the ecological impacts and risks of potential pet trade invaders, based on availability, feeding rates and behaviour. The research showed goldfish to be voracious, consuming much more than the white cloud mountain minnow or native species. In terms of behaviour patterns, goldfish were also found to be much braver, a trait linked with invasive spread.

Dr James Dickey.

Lead author, Dr James Dickey from Queen’s University Belfast, explains: “Our research suggests that goldfish pose a triple threat. Not only are they readily available, but they combine insatiable appetites with bold behaviour. While northern European climates are often a barrier to non-native species surviving in the wild, goldfish are known to be tolerant to such conditions, and could pose a real threat to native biodiversity in rivers and lakes, eating up the resources that other species depend on.

“Our research highlights that goldfish are high risk, but we hope that the methods developed here can be used to assess others in the pet trade across Ireland and further afield. Readily available species are most likely to be released, so limiting the availability of potentially impactful ones, alongside better education of pet owners, is a solution to preventing damaging invaders establishing in the future.”

The research led by Queen’s University Belfast was funded by the Alexander von Humboldt Foundation, Inland Fisheries Ireland and the Department of Agriculture, Environment and Rural Affairs (DAERA) NI. The study was presented at the International Conference on Aquatic Invasive Species in Oostende, Belgium along with a range of other leading research from Queen’s on alien species.

Research article:

Dickey JWE, Arnott G, McGlade CLO, Moore A, Riddell GE, Dick JTA (2022) Threats at home? Assessing the potential ecological impacts and risks of commonly traded pet fishes. NeoBiota 73: 109–136. https://doi.org/10.3897/neobiota.73.80542

The first cave-bound mollusc species from the Americas

Against the odds, a study by Brazilian researchers describes a new to science species of evidently cave-bound – or troglobitic – clam from northern Brazil.

Exclusively subterranean bivalves – the group of molluscs comprising clams, oysters, mussels, scallops – are considered a rarity. Prior to the present study, there had only been three such species confirmed in the world: all belonging to a small-sized mussel genus known from southeastern Europe. Furthermore, bivalves are not your typical ‘underworld’ dweller, since they are almost immobile and do not tolerate environments low in oxygen. 

Against the odds, a recent study by Dr. Luiz Ricardo L. Simone (Museum of Zoology of the University of São Paulo) and Dr Rodrigo Lopes Ferreira (Federal University of Lavras), published in the open-access scholarly journal Subterranean Biology, describes a new to science species of evidently cave-bound – or troglobitic – clam from northern Brazil. 

Small individuals of the newly described clam species Eupera troglobia sp. n. exposed to the air, next to a harvestman (Eusarcus sp.). Photo by Rodrigo Lopes Ferreira.

Named Eupera troglobia, the mollusk demonstrates features characteristic for organisms not meant to see the daylight, including lack of pigmentation, reduced size, delicate shell and fewer, yet larger eggs.

Curiously, it was back in 2006 when a report presenting a faunal survey of a cave in northern Brazil featured photographs of what was to be described as Eupera troglobia. However, the evidence was quickly dismissed: the clam must have been carried into the cave by water. 

A submerged specimen of the newly described cave-bound clam species Eupera troglobia sp. n.

In 2010, Dr Rodrigo Lopes Ferreira accessed the report and noticed the depigmentation of the clams. Wondering whether it was indeed possible that he was looking at a troglobite, he searched amongst the collected specimens from that study, but could not find any of the discoloured bivalve.

Ten years later, his team visited the cave to specifically search for depigmented shells. Although the cave was partially flooded, the researchers were able to spot the specimens they needed attached to the walls of the cave.

In conclusion, the scientists highlight that their discovery is the latest reminder about how important the conservation of the fragile subterranean habitats is, given the treasure troves in their holdings. 

Meanwhile, recently amended laws in Brazil put caves at considerably higher risk.

***

Research paper: 

Simone LRL, Ferreira RL (2022) Eupera troglobia sp. nov.: the first troglobitic bivalve from the Americas (Mollusca, Bivalvia, Sphaeriidae). Subterranean Biology 42: 165-184. https://doi.org/10.3897/subtbiol.42.78074

***

Follow the Subterranean Biology journal on Twitter and Facebook.

Learning more about bird diversity: What a museum collection in Romania can tell us

“Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe,” researcher Gergely Osváth says

Containing specimens from different locations, sometimes spanning across centuries, museum collections can teach us a lot about how some animals are built and how we can protect them. Properly labeled, preserved specimens can show us how the environment and species distribution has changed over extended time periods. Because in many cases these collections remain largely unexplored, a revision can reveal “treasures” that were hidden in plain sight for decades.

The bird skin collection of the Zoological Museum of Babeș Bolyai University, Cluj-Napoca, Romania. Photos by Gergely Osváth and Zsolt Kovács

A team of ornithologists and scientists from the Zoological Museum of Babeș-Bolyai University, Milvus Group – Bird and Nature Protection Association and the Romanian Ornithological Society, headed by Gergely Osváth, set out to revise the ornithological collection in the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania, checking the species identification of the bird skin specimens to provide an updated catalogue

The collection is unique in the region in many ways: it covers a long time span, it contains a variety of species, belonging to different families and orders, and it is composed of the work of several naturalists and employees of the museum”, Osváth says. “Due to its historical background and the presence of rare species, it is considered to be one of the most important ornithological collections in Eastern Europe.”

First, the researchers examined each bird skin and the data cards documenting the identification, locality, date, sex and catalogue number. Afterwards, they checked the species identification of specimens, determining the sex and age of birds where possible. They also updated the scientific names and taxonomy of birds. In addition, they provide a map representation with new distribution data for bird species, offering valuable information on the status of the avifauna of the Carpathian basin in the 19th and 20th centuries.

Published in the open-access journal ZooKeys, this is the first time that all those specimen data are made public.

The collection includes 925 specimens, belonging to 193 species, that were collected between 1859 and 2021. Perching birds (Passeriformes) were the best represented bird order, with 487 specimens, and 93.6 % of the specimens with known data were collected from Transylvania.

By far, the most interesting specimens were the rare ones, such as specimens of Cinereous Vulture (Aegypius monachus), Eastern Imperial Eagle (Aquila heliaca), Lesser Kestrel (Falco naumanni), all collected between 1903 and 1907 from Transylvania.

With updated information on the taxonomy and morphology of birds in Transylvania, the researchers hope this new catalogue can serve as a basis for valuable ornithological studies.

Research article:

Osváth G, Papp E, Benkő Z, Kovács Z (2022) The ornithological collection of the Zoological Museum of Babeș-Bolyai University, Cluj-Napoca, Romania – Part 1: the catalogue of bird skin specimens. ZooKeys 1102: 83-106. https://doi.org/10.3897/zookeys.1102.79102

Snake trade in Indonesia is not sustainable enough — but it could be

A substantial part of the trade in blood pythons in Indonesia is illegal and underreported, a new study published in the open-access journal Nature Conservation found.

Wildlife trade is a multi-million dollar industry. While some animals are traded legally, in compliance with legislation that aims to protect populations, wildlife trafficking continues to thrive in many places, threatening precious species with extinction.

Reptiles are exported in large numbers, and snakes are no exception. They are mostly traded for their skins, used in luxury leather products, or as pets. In the case of the blood python, which can reach up to 250 cm in length, there are clear indications of misdeclared, underreported or illegal trading involving tens of thousands of individuals around the world.

According to Vincent Nijman, professor in anthropology at Oxford Brookes University in the UK, harvest and trade in certain species of snakes, especially ones that are common and have a high reproductive output, can be sustainable. But how do we make sure it really is?

Blood python in Kaeng Krachan National Park in Thailand. Photo by Tontan Travel

“Sustainability is best assessed by surveying wild populations, but this takes time and effort,” Nijman explains. “An alternative method is to use data from slaughterhouses and compare how certain parameters (number of snakes, size, males vs females) change over time.”

This method has been used by several research groups to assess the sustainability of the harvest and trade in blood pythons in Indonesia. The outcomes of these assessments vary widely, with some researchers claiming the trade is sustainable, and others that it is not and that populations are in decline. 

“A major problem with these assessments is that while they can detect a change in, for instance, the number of blood pythons that arrive in slaughterhouses, it is unclear if this is due to changes in the wild population, changes in harvest areas, methods of harvesting, or changes in the regulations that permit the harvest to take place,” Nijman elaborates.

Blood python in Kaeng Krachan National Park in Thailand. Photo by Tontan Travel

Using publicly available information, and searching for evidence of illicit trade, he set out to establish if there is sufficient data to assess whether blood pythons are indeed exploited sustainably in Indonesia. 

“There is no conclusive data to support that the harvest of blood pythons in North Sumatra is sustainable, but there is sufficient evidence to suggest that a substantial part of this trade is illegal,” he points out in his study, which was published in the open-access journal Nature Conservation.

He goes on to explain that there is no one-on-one relationship between the sustainability of harvest and trade and its legality: “A species can be legally traded to extinction, or it can be traded illegally in small enough numbers for it to be sustainable.”

Conceptual framework of the relationship between population size, sustainable harvest and global conservation status. The harvest that took place between A and B, C and D, and E and F, could be considered sustainable, whereas it is unsustainable between B and C and D and E. The global threat assessment based on two of the IUCN threat level criteria (population size and declining populations) are not tightly linked to harvest sustainability (modified after Yamaguchi 2014).

A clear trend in the last decade  was a change in the way blood pythons are harvested, compared to previous periods, “from opportunistic capture to, at least in part, targeted collection.”

Blood pythons are not included on Indonesia’s protected species list, but their harvest and trade, both domestically and internationally, is regulated by a quota system. The harvest for domestic trade typically constitutes 10% of what is allowed to be exported.

Nijman’s research identified substantial evidence of underreported and illegal international trade in blood pythons. “Part of any assessment of sustainability of the harvest and trade in blood pythons must address this as a matter of urgency,” he concludes.

Research article:

Nijman V (2022) Harvest quotas, free markets and the sustainable trade in pythons. Nature Conservation 48: 99-121. https://doi.org/10.3897/natureconservation.48.80988

Are people swapping their cats and goldfish for praying mantises?

The first overview of the pet mantis market’s dynamics reports a lack of regulations, but also the potential of a stronger collaboration between hobbyists and scientists for biodiversity conservation.

New research sheds light on the pet insect market and its implications on biodiversity conservation

Rearing insects at home as pets may sound strange, but thousands of people all over the world have already swapped their hamsters for praying mantises or stick insects.

These insects, sold at fairs and pet markets, or collected in the wild and then reared by amateurs or professionals, are gaining increased popularity and fueling a largely unknown market. Not all of them are small, crawling monsters. Some are elegant, with flower-like coloration (the Orchid Mantis, Hymenopus coronatus), and some are funny-looking like Pokémon (e.g. the Jeweled Flower Mantis, Creobroter wahlbergii). Many can be safely manipulated and cuddled as they look at you with big, cute kitty-eyes (the Giant Shield Mantis Rhombodera basalis).

 The beautiful orchid mantis Hymenopus coronatus, one of the most priced and requested mantis species on the market. Photo by William Di Pietro

When choosing a pet insect, “customers” consider things such as shape, size, colors, and behaviors. They might also take into account how rare a certain species is, or how easy it is to look after. Looking at these preferences, Roberto Battiston of Museo di Archeologia e Scienze Naturali G. Zannato (Italy), William di Pietro of the World Biodiversity Association (Italy) and entomologist Kris Anderson (USA) published the first overview of the mantis pet market. Understanding how this market, which still mostly unregulated, is changing, may be crucial to the conservation of rare species and promoting awareness of their habitat and place in the ecosystem.

A survey among almost 200 hobbyists, enthusiasts and professional sellers in the mantis community from 28 different countries showed that the targets of this market are indeed predictable. The typical mantis breeder or enthusiast, the study found, is 19 to 30 years old and buys mantises mostly out of personal curiosity or scientific interest. Willing to spend over $30 for a single individual, most people prefer beautiful looking species over rare ones.

A cute nymph of the Jeweled Flower Mantis Creobroter wahlbergii resting on the tip of a finger. Photo by William Di Pietro

The research, published in the open-access Journal of Orthoptera Research, identified buyers as “mostly curious enthusiasts with poor knowledge of the market dynamics and the laws behind it, even if they seem to generally care about their pet.”

But the data also suggests the trade might not always be on the legal side, as “about one time out of four the lack of permits or transparency from the seller is perceived from the buyer.”

A good collaboration between science and this large community may play a crucial role in the conservation of mantises in nature, the researchers point out.

The Giant Shield Mantis Rhombodera basalis looking for a friend. Photo by William Di Pietro

Mantises and, in general, insects, are poorly known in terms of biology, distribution, and threats, with many species still unknown and waiting to be discovered. This is a major limit to their protection and conservation, since you cannot protect what you don’t know.

“Hobbyists and pet insect enthusiasts are producing and sharing a huge quantity of observations on the biology and ecology of hundreds of species, even rare or still undescribed ones, a priceless heritage for the scientific community,” the researchers conclude. 

“Strengthening the dialogue between them, promoting a white market over a black one, may be a crucial help for the conservation of these insects, fundamental parts of the biodiversity of our planet, that are replacing our traditional pets at home.”

Research article:

Battiston R, Di Pietro W, Anderson K (2022) The pet mantis market: a first overview on the praying mantis international trade (Insecta, Mantodea). Journal of Orthoptera Research 31(1): 63-68. https://doi.org/10.3897/jor.31.71458

Striking new snake species discovered in Paraguay

Only known from three individuals, Phalotris shawnella is endemic to the Cerrado forests of the department of San Pedro in east Paraguay.

Distribution map.

A beautiful non-venomous snake, previously unknown to science, was discovered in Paraguay and described by researchers of the Paraguayan NGO Para La Tierra with the collaboration of Guyra Paraguay and the Instituto de Investigación Biológica del Paraguay. It belongs to the genus Phalotris, which features 15 semi-subterranean species distributed in central South America. This group of snakes is noted for its striking colouration with red, black, and yellow patterns.

Jean-Paul Brouard, one of the involved researchers, came across an individual of the new species by chance while digging a hole at Rancho Laguna Blanca in 2014. Together with his colleagues Paul Smith and Pier Cacciali, he described the discovery in the open-access scientific journal Zoosystematics and Evolution. The authors named it Phalotris shawnella, in honour of two children – Shawn Ariel Smith Fernández and Ella Bethany Atkinson – who were born in the same year as the Fundación Para La Tierra (2008). They inspired the founders of the NGO to work for the conservation of Paraguayan wildlife, in the hope that their children can inherit a better world.

Phalotris shawnella. Photo by Jean-Paul Brouard

The new Phalotris snake is particularly attractive and can be distinguished from other related species in its genus by its red head in combination with a yellow collar, a black lateral band and orange ventral scales with irregular black spots. Only known from three individuals, it is endemic to the Cerrado forests of the department of San Pedro in east Paraguay. Its known distribution consists of two spots with sandy soils in that department – Colonia Volendam and Laguna Blanca – which are 90 km apart. 

Phalotris shawnella. Photo by Jean-Paul Brouard

The extreme rarity of this species led the authors to consider it as “Endangered”, according to the conservation categories of the International Union for Conservation of Nature (IUCN), which means it is in imminent danger of extinction in the absence of measures for its protection.

Phalotris shawnella. Photo by Jean-Paul Brouard

This species can only be found in the famous tourist destination of Laguna Blanca, an area declared as an Important Area for the Conservation of Amphibians and Reptiles. 

Phalotris shawnella. Photo by Jean-Paul Brouard

“This demonstrates once again the need to protect the natural environment in this region of Paraguay,” the authors comment. “Laguna Blanca was designated as a Nature Reserve for a period of 5 years, but currently has no protection at all. The preservation of this site should be considered a national priority for conservation.”

Research article:

Smith P, Brouard J-P, Cacciali P (2022) A new species of Phalotris (Serpentes, Colubridae, Elapomorphini) from Paraguay. Zoosystematics and Evolution 98(1): 77-85. https://doi.org/10.3897/zse.98.61064

This October, the hybrid TDWG 2022 conference will address standards for linking biodiversity data

From 17th to 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia – will run under the theme “Stronger Together: Standards for linking biodiversity data”.

Between 17th and 21st October 2022, the Biodiversity Information Standards (TDWG) conference – to be held in Sofia, Bulgaria – will run under the theme “Stronger Together: Standards for linking biodiversity data”.

The event will be hosted by scholarly publisher and technology provider Pensoft, in collaboration with the National Museum of Natural History, and the Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences. This year, the event will be welcoming participants in-person, as well as virtually.

In addition to opening and closing plenaries, the conference will feature 14 symposia and a mix of other formats that include lightning talks, a workshop, and panel discussion, and contributed oral presentations and virtual posters. 

For a seventh year in a row, all abstracts submitted to the annual conference are made publicly available in the dedicated TDWG journal: Biodiversity Information Science and Standards (BISS Journal).

Thus, the abstracts – published ahead of the event itself – are not only permanently and freely available in a ‘mini-paper’ format, but will also provide conference participants with a sneak peek into what’s coming at the much anticipated conference.

Learn more about the unique features of BISS.

***

Register and find more about the TDWG 2022 conference on Pensoft Event Manager.

See the Call for Abstracts and learn how to submit your abstract today.

Visit the TDWG conference website.

***

Ahead, during and after the conference, join the conversation on Twitter via #tdwg2022.

Don’t forget to also follow TDWG (Twitter and Facebook), BISS Journal (Twitter and Facebook) and Pensoft (Twitter and Facebook) on social media.