The permanent topical article collection aims to bring together key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.
The “Restoration of Wetlands” permanent topical article collection in the open-access, peer-reviewed scholarly journal Nature Conservation is now open for submissions, with the aim to bring together a wide spectrum of knowledge necessary to inform scientists, policy-makers and practitioners about key insights into restoration of wetlands and coastal marine systems, thereby facilitating exchange among different disciplines.
Being a permanent collection means that it is to welcome contributions indefinitely, whereas papers will progress to publication as soon as they are accepted by the editors. While they will be accessible from a central point: the collection, which is also assigned with its own DOI, the articles themselves will feature in different journal volumes, depending on their publication date.
Find more about the specificity of Special issues and Topical collections on the journal’s website.
The issue is managed by an international team of scientists:
Mathias Scholz, Helmholtz Centre for Environmental Research – UFZ, Germany (lead editor);
Due to intensive land-use, including farming, urbanisation, drainage, construction of levees or bank stabilisation or straightening of river courses and coastlines, wetlands are losing their typical functions, such as carbon storage and habitat provision. As a result, the ecosystem services they provide are declining and so is the coastal biodiversity as a whole.
Among others, the “Restoration of Wetlands” article collection in the Nature Conservation journal seeks to attract contributions addressing issues, such as the roles of society and planning, as well as biology in restoration; indicators to monitor and measure restoration success; the synergies between wetland restoration and climate change adaptation; and hands-on expertise in restoration.
***
Find more about the “Restoration of Wetlands” collection on the Nature Conservation’s journal website.
To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables.
SEEA EA is a spatially-based, integrated statistical framework for organising biophysical information about ecosystems, measuring ecosystem services, tracking changes in ecosystem extent and condition, valuing ecosystem services and assets and linking this information to measures of economic and human activity.
To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables.
The “Ecosystem Accounts” permanent collection welcomes articles that describe and report ecosystem accounting tables, compiled following the standards set by the SEEA EA. The current version of the framework is fully described in United Nations et al. (2021). System of Environmental-Economic Accounting—Ecosystem Accounting (SEEA EA), available as a white cover publication, pre-edited text subject to official editing at: https://seea.un.org/ecosystem-accounting.
This collection does not accept research papers on ecosystem accounting that solely report new developments on accounting methods, such as new models for ecosystem services, new indicators for ecosystem condition or new techniques for monetary valuation of ecosystems.
The inclusion of a compiled ecosystem accounting table is mandatory for this collection. Otherwise, papers will be diverted to the regular issue of One Ecosystem. In such cases, the authors may also choose to submit their contributions to another topical collection.
Detailed instructions for authors
Submitting authors need to select One Ecosystem as a journal and “Ecosystem Accounting table” as an article template in ARPHA Writing Tool.
Submissions to this collection shall respect the following requirements:
Introduction:
The introduction makes clear reference to the type (or types) of account(s) submitted, the accounting area, and the accounting period. The introduction should contain a clear reference to the SEEA EA.
The following accounting tables can be published with data referring to a specific accounting area and for a given accounting period:
Ecosystem extent account – physical terms: Total extent of area of one or more ecosystem types
Ecosystem condition account – physical terms: (Aggregated) data on selected ecosystem characteristics and optionally the distance from a reference condition.
Ecosystem services flow account – physical terms: Physical supply of final ecosystem services by ecosystem assets and the use of those services by economic units.
Ecosystem services flow account – monetary terms: The monetary estimate of final ecosystem services by ecosystem assets and the use of those services by economic units.
Monetary ecosystem asset account – monetary terms: Stocks and changes in stocks (additions and reductions) of ecosystem assets in monetary terms.
Data and methods
This section describes which typologies or classifications have been used to classify ecosystems, ecosystem condition indicators, ecosystem services, or economic sectors. Preference should be given to different typologies proposed by SEEA EA, but deviations or other typologies are acceptable as well.
The section provides a list of all ecosystem types, variables, indicators, or economic sectors used in the accounting tables and it provides references to the data sources used to quantify them.
Optionally, papers justify the use of variables and indicators making reference to specific selection criteria.
For ecosystem service accounts, this section describes or refers to the methods used to quantify ecosystem services.
For monetary accounts, this section describes or refers to the methods used to assign monetary values to ecosystem services.
The use of supplementary materials is recommended in case the description of data and methods is too long. In that case, this section contains a summary of the data and methods.
Accounting tables and results
This section presents the accounting table(s). Ideally, this section presents the most aggregated version of the accounting table(s), while detailed versions with a high number of rows and columns can be easily published as a spreadsheet in the supplement section of the paper.
Stylised versions of accounting tables are available in the SEEA EA guidelines. A stylized example for each ecosystem accounting table is available in MS Excel. It is highly recommended to follow these examples to the maximum possible extent.
Graphs or maps that illustrate the accounting tables or that provide key results used to compile the accounting table can be published as well in this section.
Discussion
In this section, authors are invited to add at least one of the following topics:
A short interpretation of the results: are the reported data comparable to other published data on ecosystem extent, condition or services or do they deviate substantially.
Critique or comments on the SEEA EA framework. Identify issues with application of the framework. Highlight areas for improvement or further research.
Demonstration of how the accounts have been or can be used to support policy and decision making or implementation. Particular cases of interest are (however, not restricted to) agricultural, forestry, fishery and biodiversity policies, biodiversity and ecosystem monitoring and reporting, ecosystem restoration projects, demonstrating values of ecosystems, or environmental impact assessments.
***
Visit One Ecosystem’s website and the collection’s webpage.
Hill’s horseshoe bat, a critically endangered ‘lost species’, had not been seen in forty years until the day-and-night expedition to Nyungwe National Park (Rwanda), led by Bat Conservation International.
The rediscovery marked the culmination of survey efforts that started in 2013, as the team’s dedication paid off during a ten-day and night expedition to Nyungwe National Park in January 2019.
Careful measurements of the bat before they released it back into the wild were an early tip-off that this could be the lost species they came to find. Dr. Flanders then traveled to visit museum archives in Europe to compare the only known specimens to verify that what they had captured in the African forest was, in fact, the first evidence in 40 years that Hill’s horseshoe bat still exists.
Catching this elusive species also allowed the team to collect additional information to ensure it is easier to find in the future – including recording the first-ever echolocation calls that Hill’s horseshoe bat emits as it hunts for insects.
“Knowing the echolocation calls for this species is a game-changer,”
said Dr. Paul Webala, Senior Lecturer at Maasai Mara University, and one of the team’s lead scientists.
Since catching the pair of Hill’s horseshoe bats, the Nyungwe Park Rangers have been setting out detectors that ‘eavesdrop’ on the bats during their nightly flights through the forest.
The rangers conducted audio surveys with Wildlife Acoustics bat detectors in 23 locations over nine months resulting in recording a quarter-million sound files. Analysis of the sound files revealed Hill’s horseshoe bats were heard at eight locations, all within a small area.
“All the work so far confirms that this is a very rare species with a very small core range. We look forward to collaborating with the Rwanda Development Board and Nyungwe Management Company to strengthen the existing conservation efforts to ensure it stays protected,”
said Dr. Frick.
Careful planning and strong partnership support between all the agencies, organizations and experts involved in this initiative were key to its success, according to Dr. Olivier Nsengimana, founder and executive director of the Rwanda Wildlife Conservation Association.
Records from the 2019 survey and the rest of the nine-year project’s field work are included in a dataset openly available through GBIF. Other notable highlights include the first record of Lander’s horseshoe bat (Rhinolophus landeri) in Nyungwe and the first known occurrences of the Damara woolly bat (Kerivoula argentata) in Rwanda.
The research team has released the dataset alongside a preprint describing the findings and survey methods currently in review with Biodiversity Data Journal. Sharing such data, even for such a rare species, allows the international scientific community to put it to use immediately and aid conservation and research aimed at documenting and protecting African bat diversity.
“Nyungwe National Park is one of the most biologically important montane rainforests in Central Africa, supporting an exceptional range of biodiversity including many rare and endemic species, including bats. These findings reinforce the importance of Rwanda’s committed stewardship of Nyungwe National Park as a global biodiversity hotspot and our conservation efforts, including implementing species management actions. We look forward to continuing this collaboration with BCI, RWCA, and the rest of our partners to find out more about the bat diversity in this incredible landscape,”
said Mr. Eugene Mutangana, the Conservation Management Expert, Rwanda Development Board.
“Sharing the survey data to be accessible freely through GBIF is as important to bat conservation as the actual findings. These data belong to anyone and everyone working to ensure these species have protected forests to call home. Open data sharing ensures we live up to the promise that conservation benefits us all,”
said Dr. Frick.
***
Preprint citation:
Flanders J, Frick WF, Nziza J, Nsengimana O, Kaleme P, Dusabe MC, Ndikubwimana I, Twizeyimana I, Kibiwot S, Ntihemuka P, Cheng TL, Muvunyi R, Webala P (2022) Rediscovery of the critically endangered Hill’s horseshoe bat (Rhinolophus hilli) and other new records of bat species in Rwanda. ARPHA Preprints. https://doi.org/10.3897/arphapreprints.e83547
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.
Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.
The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives.
In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species.
Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.
Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade.
“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”
says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.
Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described.
For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs.
“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”
says Rocha says
“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”
adds Najeeb.
***
Research article:
Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139
Led by our values that have always – above all – been grounded on collaboration, appreciation and friendship with no borders, at Pensoft, we wish to express our deepest regret, sympathy and support to all who have unwillingly been involved in the devastating humanitarian crisis, caused by the Russian invasion in Ukraine. We condemn all actions that have caused human lives to be lost or wrecked, families to be separated, homes to be demolished and millions to seek shelter!
This crisis has already had a devastating impact on scientific endeavors, collaboration and progress. Therefore, until the conflict is resolved, we offer our support to all our colleagues in science who have been affected by the war and stand up for peace, by providing:
Employment to Ukrainian refugees holding qualifications suitable for our company.
Waivers for publications by researchers affiliated with Ukrainian institutions.
We appeal to national leaders to end this conflict through negotiation in the name of global peace and humanity!
Invasive alien species (IAS) are a leading contributor to biodiversity loss, and they cause annual economic damage in the order of hundreds of billions of US dollars in each of many countries around the world. Smartphone apps are one relatively new tool that could help monitor, predict, and ideally prevent their spread. But are they living up to their full potential?
A team of researchers from the University of Montana, the Flathead Lake Biological Station and the University of Georgia River Basin Center tried to answer that in a recent research paper in the open access, peer-reviewed journal NeoBiota. Going through nearly 500 peer-reviewed articles, they identified the key features of the perfect IAS reporting app and then rated all known English-language IAS reporting apps available to North America users against this ideal.
Smartphone apps have the potential to be powerful reporting tools. Citizen scientists the world around have made major contributions to the reporting of biodiversity using apps like iNaturalist and eBird. But apps for reporting invasive species never reached that level of popularity; Howard and his team investigated why.
User uptake and retention are just as important as collecting data. Howard and colleagues found that apps tend to do a good job with one of these, and rarely with both. In their paper, they emphasize that making apps user-friendly and fun to use, involving games and useful functions like species identification and social media plug-ins is a major missing piece among current apps.
“The greatest advancement in IAS early detection would likely result from app gamification,” they write.
Another feature they would like to see more of is artificial intelligence or machine learning for photo identification, which they believe would greatly enhance species identification and might increase public participation.
The authors also make suggestions for future innovations that could make IAS reporting apps even more effective. Their biggest suggestion is coordination.
“Currently, most invasive species apps are developed by many separate organizations, leading to duplicated effort and inconsistent implementation”, they say. “The valuable data collected by these apps is also sent to different databases, making it harder for scientists to combine them for useful research.”
A more efficient way to implement these technologies might be providing open-source code and app templates, with which local organizations can make regional apps that contribute data to centralized databases.
Overall, this research shows how with broader participation, more complete and informative reporting forms, and more consistent and structured data management, IAS reporting apps could make much larger contributions to invasive species management worldwide. This, in turn, could save local, regional, and national economies hundreds of millions or billions of dollars annually, while protecting valuable ecological and agricultural systems for future generations.
Research article:
Howard L, van Rees C, Dahquist Z, Luikart G, Hand B (2022) A review of invasive species reporting apps for citizen science and opportunities for innovation. NeoBiota 71: 165-188. https://doi.org/10.3897/neobiota.71.79597
New Research Idea, published in RIO Journal presents a promising machine-learning ecosystem to unite experts around the world and make up for lacking taxonomic expertise.
In their Research Idea, published in Research Ideas and Outcomes (RIO Journal), Swiss-Dutch research team present a promising machine-learning ecosystem to unite experts around the world and make up for lacking expert staff
Guest blog post by Luc Willemse, Senior collection manager at Naturalis Biodiversity Centre (Leiden, Netherlands)
Imagine the workday of a curator in a national natural history museum. Having spent several decades learning about a specific subgroup of grasshoppers, that person is now busy working on the identification and organisation of the holdings of the institution. To do this, the curator needs to study in detail a huge number of undescribed grasshoppers collected from all sorts of habitats around the world.
The problem here, however, is that a curator at a smaller natural history institution – is usually responsible for all insects kept at the museum, ranging from butterflies to beetles, flies and so on. In total, we know of around 1 million described insect species worldwide. Meanwhile, another 3,000 are being added each year, while many more are redescribed, as a result of further study and new discoveries. Becoming a specialist for grasshoppers was already a laborious activity that took decades, how about knowing all insects of the world? That’s simply impossible.
Then, how could we expect from one person to sort and update all collections at a museum: an activity that is the cornerstone of biodiversity research? A part of the solution, hiring and training additional staff, is costly and time-consuming, especially when we know that experts on certain species groups are already scarce on a global scale.
We believe that automated image recognition holds the key to reliable and sustainable practises at natural history institutions.
Today, image recognition tools integrated in mobile apps are already being used even by citizen scientists to identify plants and animals in the field. Based on an image taken by a smartphone, those tools identify specimens on the fly and estimate the accuracy of their results. What’s more is the fact that those identifications have proven to be almost as accurate as those done by humans. This gives us hope that we could help curators at museums worldwide take better and more timely care of the collections they are responsible for.
However, specimen identification for the use of natural history institutions is still much more complex than the tools used in the field. After all, the information they store and should be able to provide is meant to serve as a knowledge hub for educational and reference purposes for present and future generations of researchers around the globe.
This is why we propose a sustainable system where images, knowledge, trained recognition models and tools are exchanged between institutes, and where an international collaboration between museums from all sizes is crucial. The aim is to have a system that will benefit the entire community of natural history collections in providing further access to their invaluable collections.
We propose four elements to this system:
A central library of already trained image recognition models (algorithms) needs to be created. It will be openly accessible, so any other institute can profit from models trained by others.
A central library of datasets accessing images of collection specimens that have recently been identified by experts. This will provide an indispensable source of images for training new algorithms.
A digital workbench that provides an easy-to-use interface for inexperienced users to customise the algorithms and datasets to the particular needs in their own collections.
As the entire system depends on international collaboration as well as sharing of algorithms and datasets, a user forum is essential to discuss issues, coordinate, evaluate, test or implement novel technologies.
How would this work on a daily basis for curators? We provide two examples of use cases.
First, let’s zoom in to a case where a curator needs to identify a box of insects, for example bush crickets, to a lower taxonomic level. Here, he/she would take an image of the box and split it into segments of individual specimens. Then, image recognition will identify the bush crickets to a lower taxonomic level. The result, which we present in the table below – will be used to update object-level registration or to physically rearrange specimens into more accurate boxes. This entire step can also be done by non-specialist staff.
Another example is to incorporate image recognition tools into digitisation processes that include imaging specimens. In this case, image recognition tools can be used on the fly to check or confirm the identifications and thus improve data quality.
Using image recognition tools to identify specimens in museum collections is likely to become common practice in the future. It is a technical tool that will enable the community to share available taxonomic expertise.
Using image recognition tools creates the possibility to identify species groups for which there is very limited to none in-house expertise. Such practises would substantially reduce costs and time spent per treated item.
Image recognition applications carry metadata like version numbers and/or datasets used for training. Additionally, such an approach would make identification more transparent than the one carried out by humans whose expertise is, by design, in no way standardised or transparent.
Greeff M, Caspers M, Kalkman V, Willemse L, Sunderland BD, Bánki O, Hogeweg L (2022) Sharing taxonomic expertise between natural history collections using image recognition. Research Ideas and Outcomes 8: e79187. https://doi.org/10.3897/rio.8.e79187
The plant – unique with its showy, intense yellow flowers – was described by Polish orchidologists in collaboration with an Ecuadorian company operating in orchid research, cultivation and supply.
An astounding new species of orchid has been discovered in the cloud rainforest of Northern Ecuador. Scientifically named Maxillaria anacatalina-portillae, the plant – unique with its showy, intense yellow flowers – was described by Polish orchidologists in collaboration with an Ecuadorian company operating in orchid research, cultivation and supply.
Known from a restricted area in the province of Carchi, the orchid is presumed to be a critically endangered species, as its rare populations already experience the ill-effects of climate change and human activity. The discovery was aided by a local commercial nursery, which was already cultivating these orchids. The study is published in the open-access journal PhytoKeys.
During the past few years, scientists from the University of Gdańsk (Poland) have been working intensely on the classification and species delimitations within the Neotropical genus Maxillaria – one of the biggest in the orchid family. They have investigated materials deposited in most of the world’s herbarium collections across Europe and the Americas, and conducted several field trips in South America in the search of the astonishing plants.
The first specimens of what was to become known as the new to science Maxillaria anacatalina-portillae were collected by Alex Portilla, photographer and sales manager at Ecuagenera, an Ecuadorian company dedicated to orchid research, cultivation and supply, on 11th November 2003 in Maldonado, Carchi Province (northern Ecuador). There, he photographed the orchid in its natural habitat and then brought it to the greenhouses of his company for cultivation. Later, its offspring was offered at the commercial market under the name of a different species of the same genus: Maxillaria sanderiana ‘xanthina’ (‘xanthina’ in Latin means ‘yellow’ or ‘red-yellow’).
In the meantime, Prof. Dariusz L. Szlachetko and Dr. Monika M. Lipińska would encounter the same intriguing plants with uniquely colored flowers on several different occasions. Suspecting that they may be facing an undescribed taxon, they joined efforts with Dr. Natalia Olędrzyńska and Aidar A. Sumbembayev, to conduct additional morphological and phylogenetic analyses, using samples from both commercial and hobby growers, as well as crucial plants purchased from Ecuagenera that were later cultivated in the greenhouses of the University of Gdańsk.
As their study confirmed that the orchid was indeed a previously unknown species, the scientists honored the original discoverer of the astonishing plant by naming it after his daughter: Ana Catalina Portilla Schröder.
Research paper:
Lipińska MM, Olędrzyńska N, Portilla A, Łuszczek D, Sumbembayev AA, Szlachetko DL (2022) Maxillaria anacatalinaportillae (Orchidaceae, Maxillariinae), a new remarkable species from Ecuador. PhytoKeys 190: 15-33. https://doi.org/10.3897/phytokeys.190.77918
Counting over 155,000 individuals, the population is a world precedent. Globally, this orchid can only be found in the south of France, Italy, and along the east coast of the Adriatic.
In Corsica, away from the eyes of locals and tourists, hides a population of unprecedented proportions of a rare and protected orchid: the neglected Serapias (Serapiasneglecta). In a closed military base in the east of the island, researchers discovered 155,000 individuals of the plant.
Globally, this orchid can only be found in the south of France (including Corsica), Italy, and along the east coast of the Adriatic, but none of its known populations has been as abundant as the one documented in Solenzara.
The maintenance of the closed military area turned out to be really favourable to the development of orchids. The flower was abundant around the edges of runways and on lawns near military buildings.
“Мilitary bases are important areas for biodiversity because they are closed to the public, are not heavily impacted and these areas have soils that are often poorly fertilised and untreated due to old installations, so they often have high biodiversity,” the researchers say in their study.
The meadows around the airport are regularly mowed for security reasons, which allows orchids to thrive in a low vegetation environment with little competition. In addition, the history of the land with its position on the old Travo river bed favours low vegetation, providing rocky ground just a few centimetres beneath the soil.
“The case of S. neglecta is particularly remarkable, because this species benefits from a national protection status and it is a sub-endemic species with a very localised distribution worldwide,” the research team writes. Moreover, the species is classified as near threatened in the World and European Red Lists of the International Union for Conservation of Nature.
The Ecotonia consultancy also did several inventories on the air base, finding biodiversity of rare richness: 552 species of plants, including 19 with protected status in France. Within only 550 ha, they found 23% of the plant species distributed in Corsica. Among these are some very rare plants, as well as endangered species such as the gratiole (Gratiola officinalis) and Anthemis arvensis subsp. incrassate, a subspecies of the corn chamomile.
The Solenzara military base hides rich floristic diversity thanks to its history, management, and the lack of public access. While the Corsican coastline is suffering from urbanisation, this sector is a testament to the local flora, featuring several species with conservation status.
The protection of this richness is crucial. “If logistical developments are carried out on this base, they will have to favour the conservation of this exceptional floristic biodiversity, and, in particular of this particularly abundant orchid. Military bases are a great opportunity for the conservation of species and would benefit from enhancing their natural heritage,” the researchers conclude.
Research article:
Julien M, Schatz B, Contant S, Filippi G (2022) Flora richness of a military area: discovery of a remarkable station of Serapias neglecta in Corsica. Biodiversity Data Journal 10: e76375. https://doi.org/10.3897/BDJ.10.e76375
The people of Peru’s Comunidad Nativa Tres Esquinas have long known about a tiny, burrowing frog with a characteristically long snout. Yet, until now, this species has remained elusive to biologists.
The people of Peru’s Comunidad Nativa Tres Esquinas have long known about a tiny, burrowing frog with a long snout; one local name for it is rana danta, “tapir frog” for its resemblance to the large-nosed Amazonian mammal. But until now, this frog has remained elusive to biologists. Thanks to the help of local guides, an international team of researchers was able to find the frog and give it an official scientific name and description.
“These frogs are really hard to find, and that leads to them being understudied,” says Michelle Thompson, a researcher in the Keller Science Action Center at Chicago’s Field Museum and one of the authors of a study describing the frog in Evolutionary Systematics. “It’s an example of the Amazon’s hidden diversity, and it’s important to document it to understand how important the ecosystem functions.”
“Frogs of this genus are spread throughout the Amazon, but since they live underground and can’t get very far by digging, the ranges each species is distributed in are fairly small. Since we found this new species in Amazon peatland, it wouldn’t be strange for it to be restricted to this environment. Its body shape and general look seems to be adapted to the soft soil of the peatland, rather than the robust and wider shape of species in other environments,”says Germán Chávez, a researcher at Peru’s Instituto Peruano de Herpetología and the study’s first author.
The tapir frog’s appearance is striking. “It looks like a caricature of a tapir, because it has a big blobby body with this tiny little pointy head,” says Thompson. But despite its goofy appearance, it was very difficult to find. “The frogs are tiny, about the size of a quarter, they’re like brown, they’re underground, and they’re quick,” she says. “You know these little frogs are somewhere underground, but you just don’t see them hopping around.”
But while the frogs are hard to see, they’re not hard to hear. “We just kept hearing this beep-beep-beep coming from underground, and we suspected it could be a new species of burrowing frog because there had recently been other species in its genus described,” says Thompson. “But how do we get to it?”
Local guides who were familiar with the frogs led the researchers to peatland areas– wetlands carpeted with nutrient-rich turf made of decaying plant matter. The team searched by night, when the frogs were most active.
“After 15 to 20 minutes of digging and looking for them, I heard Michelle screaming, and to me that could only mean that she and David had found the first adult,” says Chavez.
“We could hear them underground, going beep-beep-beep, and we’d stop, turn off our lights, and dig around, and then listen for it again,” says Thompson. “After a few hours, one hopped out of his little burrow, and we were screaming, ‘Somebody grab it!’”
In addition to finally finding adult specimens of the frogs, the team recorded their calls. “I am obsessed with recording frog calls, so I decided to record the call first and then continue digging,” says Chávez.
The researchers used the physical specimens of the frogs, along with the recordings of their calls and an analysis of the frogs’ DNA, to confirm that they were a new species. They named them Synapturanus danta– Synapturanus is the name of the genus they belong to, and danta is the local word for “tapir.”
The frogs’ burrowing behavior that made them hard to find likely makes them an important part of their peatland home. “They’re part of the underground ecosystem,” says Thompson. “They’re moving down there, they’re eating down there, they’re laying their eggs down there. They contribute to nutrient cycling and changing the soil structure.”
“Beside the important role of this new species in the food chain of its habitat, we believe that it could be an indicator of healthy peatlands,” says Chávez. “First, we have to confirm whether it’s restricted to this habitat, but its body adaptations seem to point in that direction. For instance, if the habitat is too dry, the soil would become too hard for a non-robust frog like this one to dig. This would leave our frog with far fewer chances to find a shelter and eventually, it would be hunted by a bigger predator. So I think possibilities that this frog would be a wetlands specialist are high, but still need to go further in this research to confirm it.”
And the study’s implications go beyond the description of one little frog. S. danta was found during a rapid inventory led by Field Museum scientists, a program in which biologists and social scientists spend a few weeks in a patch of the Amazon to learn what species live there, how the people in the area manage the land, and how they can help make a case for the area to be protected. “Even though it’s called a rapid inventory, it could take a year or more to plan these things, and then it could take a year or a decade to do the conservation follow-up,” says Thompson. “The rapid part is where you spend a month in the field. And it’s a total whirlwind.”
Peru’s Putumayo Basin, where this rapid inventory took place, is part of a larger conservation scheme by the Keller Science Action Center and its partners. “The Putumayo Corridor spans from Ecuador, Colombia, Peru, and down to Brazil, following the Putumayo River,” says Thompson. “There’s very little deforestation, and it’s also one of the last free flowing rivers that has no current dams. There’s like a huge conservation opportunity to conserve the whole corridor, watershed and surrounding areas. This tapir frog is another piece of evidence of why scientists and local people need to work together to protect this region.”
Research article:
Chávez G, Thompson ME, Sánchez DA, Chávez-Arribasplata JC, Catenazzi A (2022) A needle in a haystack: Integrative taxonomy reveals the existence of a new small species of fossorial frog (Anura, Microhylidae, Synapturanus) from the vast lower Putumayo basin, Peru. Evolutionary Systematics 6(1): 9-20. https://doi.org/10.3897/evolsyst.6.80281