With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.
With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.
10. The delicious wild oak mushroom
It’s amazing that edible species, long known to local communities, can still present a novelty for science. This was the case with Cantharellus veraecrucis, a chanterelle from – that’s right, Veracruz, Mexico.
During the rainy season, locals harvest this mushroom from tropical oak forests to sell it or enjoy it as a delicacy; this is probably why they’ve dubbed it “Oak mushroom”.
If you ever see a leaf insect, there’s a good chance you won’t notice it – these little critters are masters of camouflaging.
This picture was taken in 2014, when Jérôme Constant and Joachim Bresseel from the Royal Belgian Institute of Natural Sciences were enjoying a night walk in Vietnam’s Nui Chua National Park. It wasn’t until this year, though, that this beauty got its own scientific name: Cryptophyllium nuichuaense. Named after the park where it was found, it is oneof 13 new species of leaf insects described in our journal ZooKeysthis February.
This leaf insect, like many others, is endemic to Vietnam. This is why the researchers who found itcall for the creation of more protected areas in order to keep this precious biodiversity intact.
Unlike most spiders, trapdoor spiders don’t use silk to make a web. Instead, they live in burrows lined with silk that they cover with a “trapdoor”. They are relatively widely spread, but you’d rarely encounter one out in the open, because they spend most of their lives underground.
This is probably why arachnologists and spider lovers the world over got so excited when Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species of trapdoor spiders from the genus Ummidia – in addition to the 27 already known.
One of the 33 is Ummidia neilgaimani, named after fantasy and horror writer Neil Gaiman. A particular favorite of Dr. Godwin, Gaiman is the author of a number of books with spider-based characters. His novel American Gods features a character based on the West African spider god Anansi and a World Tree “one hour south of Blacksburg,” not far from the type locality of this species. He’s also part of the documentary Sixteen Legs, in his own words “An amazing film about Tasmanian cave spider sex.”
“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.
Bungarus suzhenaewas only described as a new species this year, but its reputation preceded it – in a bad way. Researchers were already familiar with a notorious black-and-white banded krait that bit herpetologists on expeditions in Myanmar and China – in one infamous case, to death. After extensive morphological and phylogenetical analysis, the researchers were finally able to confirm it as new to science.
The story behind B. suzhenae’s name is interesting, too: it was named after a character from the traditional Chinese myth ‘Legend of White Snake’. The powerful snake goddess Bai Su Zhen is to this day regarded as a symbol of true love and good-heartedness in China.
Snakebites from kraits – including this one – are known to have a high mortality. This is why the new knowledge on B. suzhenae and its description as a new species are essential to the research on its venom and an important step in the development of antivenom and improved snakebite treatment.
Commonly known as “fairy lanterns”, plants of the genus Thismia are very rare and small in size. They are mycoheterotrophic, which means they live in close association with fungi from which they acquire most of their nutrition. They’re also very elusive, growing in dark, remote rainforests, and visible only when they emerge to flower and set seed after heavy rain.
In fact, researchers were only able to find one specimen of the new T. sitimeriamiae, which they discovered in the Terengganu State of Malaysia – the rest of the population had been destroyed by wild boars.
Just discovered, T. sitimeriamiae may already be threatened by extinction – which is why the research team that discovered it suggest that this exceptionally rare plant is classified as Critically Endangered.
… and 27 other new species of beetles discovered on Sulawesi Island
Many curious animals can be found on the Indonesian Island of Sulawesi – such as the deer-hog and the midget buffalo. But the island’s tropical forests hide a diversity of tiny insects that still remains largely unexplored. Museum scientists from Indonesia and Germany have just discovered 28 new species of beetles, all belonging to the weevil genus Trigonopterus.
Most of the new species were collected by Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense, from two localities of Central Sulawesi Province: Mt. Dako and Mt. Pompangeo. In fact, the forests on their slopes had never been searched for small weevils before.
His research partner, Alexander Riedel of the Natural History Museum Karlsruhe, had been studying this genus for the past 15 years and was planning for a research trip to Papua New Guinea, when the COVID-19 pandemic hit. Finding himself grounded, he decided to work on the specimens from Sulawesi together with Narakusumo instead.
After diagnosing the new species, it was a challenge to find suitable names for them. One obvious choice was Trigonopterus corona, which reflects the large impact of the COVID-19 pandemic on this project. However, T. corona is by far not the first insect species with a pandemic-inspired name. In the last year, we’ve seen the species descriptions of the caddisfly Potamophylax coronavirus and the wasps Stethantyx covida and Allorhogas quarentenus.
While some of the newly described species go by rather ‘standard’ names that derive from either the localities they have been collected from or their distinct characters, others were given a free pass to the Hall of Fame. Two of them were named after Indonesian movie characters (T. gundala and T. unyil), while T. ewok is another addition based on the Star Wars universe – perfectly in line with T. chewbacca, T. yoda and T.porg, all described between 2016 and 2019 by teams involving Riedel. The two-millimeter-long, rust-coloured Trigonopterus ewok was found at 1900–2000 m on Mt Pompangeo, hiding among the leaf litter in the forest.
But how come the critters have remained overlooked for so long? Almost all of these beetles measure only 2-3 millimeters, while most entomologists have a preference for the larger and strikingly looking stag beetles or jewel beetles.
A second factor is the superficial resemblance of many species: they are most easily diagnosed by their DNA sequences. Besides the publication in the open-access journal ZooKeys, high-resolution photographs of each species were uploaded to theSpecies ID website, along with a short scientific description. This provides a face to the species name, an important prerequisite for future studies.
This is the duo’s second published paper on Trigonopterus weevils from Sulawesi – the first one describing the whopping 103 new species from the area. Currently, the known Trigonopterus species on the island amount to 132, which is likely a mere fraction of the real diversity. The numerous mountains of Sulawesi have a distinct fauna of endemics that have evolved over the past millions of years, and these wingless, flightless weevils, highly isolated in their habitats, are a good example of this diversification. Their evolution is interwoven with the island´s geological history. Riedel wants to increase the number of sampled localities:
“Once we have enough locality coverage and understand the weevils’ evolution, we can draw conclusions on the geological processes that formed the island of Sulawesi. This is a fascinating subject, because this island was formed by the fusion of different fragments millions of years ago.” The new species thus fill an important gap required for solving the island´s geological puzzle.
For the Indonesian side, it is equally important to obtain an inventory of species: “A large percentage of Indonesian biodiversity is yet unknown and we need names and diagnoses of species, so we can use these in further studies on conservation and bioprospecting,” says R. Pramesa Narakusumo. “Two of the newly described species came from our museum collection, and this underlines the importance of museums as a source for biological discoveries,” he added.
With many more new species of this genus to be expected, it is a lucky coincidence that the number of Star Wars characters is equally long. May the Force be with these researchers!
Research article:
Narakusumo RP, Riedel A (2021) Twenty-eight new species of Trigonopterus Fauvel (Coleoptera, Curculionidae) from Central Sulawesi. ZooKeys 1065: 29-79.https://doi.org/10.3897/zookeys.1065.71680
In Pakistan, amphibians have long been neglected in wildlife conservation, management decisions and research agendas. To counter this, scientists have now published the first comprehensive study on all known amphibian species in the country in the open-access scholarly journal ZooKeys. The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.
Amphibians are bioindicators of an ecosystem’s health and may also serve as biological control of crop and forest pests. The First Herpetological Congress, organized in 1989, presented alarming findings about the decline in amphibian populations. Currently, amphibians include the highest percentage of threatened species (>40%), as well as the highest number of data deficient species (>1500 species). The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.
Researchers just published the first comprehensive study on all known amphibian species of Pakistan in the open-access journalZooKeys. In it, they report 21 species from the country, providing their identification key and photographic guide. However, as many of Pakistan’s potential amphibian habitats are difficult to access and study, especially the high-altitude northern and arid western mountains, it is highly likely that a lot of species are yet to be discovered.
In particular, the authors point out that habitats facing destruction, urbanization, pollution, unsustainable utilization and other human-caused threats need to be put on high priority, so that suitable conservation strategies can be devised. This way, amphibian populations would be better controlled with less financial, administrative, and human resources.
So far, amphibians have been excluded from all current legislative and policy decisions in the country. Likewise, they are not protected under any law. Hence, the legislation pertaining to rare and endemic species needs to be updated. Schedule III, which includes protected species, provincial and federal wildlife laws, and CITES appendices are in particular need of revision.
Currently, wildlife conservation projects in Pakistan mainly focus on carnivores, ungulates and birds. Therefore, the authors of the study propose adopting an inclusive wildlife conservation approach in Pakistan. This approach would advocate the integration of poorly documented taxa, such as amphibians, in wildlife conservation and management projects. It is by highlighting the significance of their existence and the intrinsic values of all wildlife species that local ecosystems can remain healthy in the long run.
“There is also a dire need to change social attitudes towards the appreciation and significance of amphibians in our society. This could be achieved by initiating community awareness, outreach and school classrooms, and through citizen science programs,” add the researchers.
Research article: Rais M, Ahmed W, Sajjad A, Akram A, Saeed M, Hamid HN, Abid A (2021) Amphibian fauna of Pakistan with notes on future prospects of research and conservation. ZooKeys 1062: 157-175.https://doi.org/10.3897/zookeys.1062.66913
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper from Tibet, and the Glacier pit viper found west of the Nujiang River and Heishui, Sichuan.
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor Universitypublished the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.
The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.
Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.
The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher.
Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.
A misty morning near the habitat of Glacier pit viper.
We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.
Research article:
Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
“(…) pronotum often takes on various extreme modifications, giving to the insects a most grotesque or bizarre appearance (…)”
quote from Hancock, Joseph Lane (1907) Orthoptera fam. Acridiidae, subfam Tetriginae. Genera Insectorum.
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? Well, I must disappoint you. What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
Most of the research you can find out there is probably based on genera Tetrix and Paratettix in Europe or Northern America (Adžić et al. 2021). Species of Northern America (Nearctic region, 35 species) and Europe (W Palearctic region, 11 species) are indeed best known from the standpoint of natural history, even though they represent only about 2% of the diversity. Here is the list of 19 species that are most often observed by amateur naturalists on the iNaturalist platform (Table 1) and as you can see 12 out of 19 species are indeed from Europe and Northern America. Because of that, let us focus on awesome neglected diversity in the tropics.
Species
Geographic distribution
N of observations
Tetrix subulata
Holarctic
618
Tettigidea lateralis
Nearctic
505
Tetrix undulata
W Palearctic
267
Tetrix tenuicornis
Palearctic
225
Criotettix bispinosus
Indochina and islands of SE Asia
225
Paratettix meridionalis
W Palearctic: Mediterranean
145
Paratettix mexicanus
Nearctic
111
Tetrix depressa
W Palearctic
90
Tetrix arenosa
Nearctic
82
Tetrix bipunctata
W Palearctic
77
Tetrix japonica
E Palearctic
73
Paratettix aztecus
S Nearctic to N Neotropics
54
Paraselina brunneri
E Australia
54
Nomotettix cristatus
Nearctic
53
Tetrix ceperoi
W Palearctic
51
Hyperyboella orphania
New Caledonia
49
Scelimena producta
Java, Sumatra, Bali
31
Eurymorphopus bolivariensis
New Caledonia
30
Discotettix belzebuth
Borneo
26
Table 1. Well-known Tetrigidae species. Pygmy grasshoppers with more than 25 Research-Grade observations in iNaturalist, together with their distribution briefly explained.
Why do I mention the iNaturalist platform? Because I think it is the future of zoology, especially of faunistics. Never before have we been able to simultaneously gather so much data from so many different places. I started using Flickr some time ago to search for photos of unidentified rare pygmy grasshoppers. I did find many rare species, and what is even crazier, species that were not known to science. I’ll try to present you with a glimpse of the diversity I found online, so maybe some new students or amateurs will contribute, as they did with Paraselina brunneri, after the study was published in ZooKeys.
The Angled Australian barkhopper, Paraselina brunneri (= P. multifora). A, B, D a female from Upper Orara, photos by Nick Lambert. C a female from Lansdowne forest, photo by Reiner Richter. E a male from Mt. Glorious, photo by Griffin Chong. F individual from Mt. Mellum, photo by Ian McMaster.
It seems that “rare” species from Australia are not so rare after all
Many new records ofParaselina brunneri and Selivinga tribulata can now be found online, thanks to a study published with ZooKeys.
The Tribulation helmed groundhopper, Selivinga tribulata, living specimens in natural habitat. A Female from Kuranda, photo by David Rentz. B male from Kuranda, photo by David Rentz. C male from Tully Range, photo by Matthew Connors. D nymph from Redlynch, photo by Matthew Connors. E, G a male from Kingfisher park, photo by Nick Monaghan. F female from Speewah, photo by Matthew Connors.
Enjoy some selected awesome places and selected amazing taxa that inhabit those places. Emphasis is given on the extremely rare and weird-looking, or as Hancock called them, bizarre and grotesque species. Those with leaf-like morphology, spines, warts, undulations, or horns. Enjoy a short voyage from the rainforests of Madagascar through the humid forests of Australia, New Guinea, Borneo, and finally the Atlantic Forest of Brazil.
Madagascar is home to some of the largest and most colourful species of Tetrigidae in whole world
Very peculiar are the species of the genera Holocerusand Notocerus, both of which were discussed in studies published in ZooKeys. Finally, one can find photographs of these beauties identified to species level.
Variability of Holocerus lucifer. A living specimen in Marojejy NP, photo by R. Becky. B–E variability of pronotal projection morphology (B holotype of Holocerus lucifer C Maroantsentra, Antongil Bay D holotype of H. taurus E Tamatave.
Interesting fact about those large pygmy grasshoppers: When I visited the rainforests of Madagascar, I observed one Holocerus devriesei and took photos of it. The insect then took flight far away in the rainforest. Who could think that an animal with such a large back spines could be such a skilful flier! The same is maybe true for Notocerus.
Holocerus devriesei in natural habitat. A Nymph from Andasibe, photo by P. Bertner. B nymph from Vohimana, photo by F. Vassen. C adult ♀ from Andasibe in c in dorsal view and D in dorsal view, photos by P. Bertner.Holocerus devriesei and its habitat. A ♂ from Ranomafana in natural habitat, photos by M. Hoffmann. B–E adult ♂ from Analamazaotra, photos by J. Skejo. F–G natural habitat in Analamazaotra G Ravenala madagascariensis, the Traveler’s Palm, photos by J. Skejo.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in lateral view. Photo by Éric Mathieu.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in dorsal view. Photo by Éric Mathieu.
Not all pygmy grasshoppers are large and colourful
Some species, like the Pymgy unicorns of Southern America are small but still interesting. Metopomystrum muriciense was described with ZooKeys from the Atlantic rainforests of Murici, Brazil, in 2017.
Metopomystrum muriciense: A Male holotype, head and portion of sternum, frontal view B head and portion of pronotum, dorsal view C head and portion of pronotum, lateral view (* sternomentum). Scale bars: 2.0 mm.
Some pygmy grasshoppers are weird
Giraffehoppers from New Guinea are among the most unique pygmy grasshoppers. Many species can be differentiated by the antennal shape, and maybe by face coloration. Those are very visual animals, and antennae and colours might be used for courtship (Tumbrinck & Skejo 2017).
A field photographic record of a living Ophiotettix pulcherrima mating pair from Yapen Island, Cenderawasih Bay, W New Guinea, lateral view. Photo by D. PriceField photographic records of living Ophiotettix.
For young entomologists: How did I decide to study pygmy grasshoppers?
No true biology student knows what she or he wants to study and which direction to take. With me, it was pretty much the same thing. Systematics caught my attention during primary and high school, and I always had a tendency to systematically compare data. My first idea was to study snakes, as I was amazed by shield-tailed snakes (Uropeltidae) and blind snakes (Scolecophidia), about whom I have read a lot. Unfortunately, I never saw representatives of those snake groups, but fortunately, there were a lot of animals that I had seen, and with whom I was more familiar in the field. Among them, there were grasshoppers and crickets (order Orthoptera). Together with Fran Rebrina, my friend and fellow student, I started the first systematic research of Orthoptera of Croatia and the Balkans. Our study on two Croatian endemic species, Rhacocleis buchichii and Barbitistes kaltenbachi, was published with ZooKeys last year.
In the first years of our Orthoptera studies (2011-2012), I never saw a single pygmy grasshopper in Croatia. I remember it as if it was yesterday when Fran and I asked our senior colleague, Ivan Budinski (BIOM, Sinj), where we could find Tetrigidae, and he confidently said that they are to be found around water. Peruća lake near the city of Vrlika was he place where I saw pygmy grasshoppers, namely Tetrix depressa and Tetrix ceperoi, for the first time ever. I could not believe that there were grasshoppers whose lifecycle is water dependent in any way, so I kept researching them, contacting leading European orthopterists familiar with them (Hendrik Devriese, Axel Hochkirch, Josef Tumbrinck), and checking all the museum collections where I could enter. The encounter on the shores of Peruća was the moment that determined my career as an entomologist. After I discovered specimens of the extremely rare Tetrix transsylvanica in Croatian Natural History Museum (HPM – Hrvatski Prirodoslovni Muzej, Zagreb) in 2013 (Skejo et al. 2014), and after a serendipitous discovery of a new Arulenus species (Skejo & Caballero 2016), I just decided that maybe this interesting group was understudied and required systematic research, and here I am in 2021, regularly publishing on this very group.
References
Adžić K, Deranja M, Pavlović M, Tumbrinck J, Skejo J (2021). Endangered Pygmy Grasshoppers (Tetrigidae). Imperiled – Enyclopaedia of Conservation,. Elsevier, https://doi.org/10.1016/B978-0-12-821139-7.00046-5
Mathieu É, Pavlović M, Skejo J (2021) The true colours of the Formidable Pygmy Grasshopper (Notocerus formidabilis Günther, 1974) from the Sava region (Madagascar). ZooKeys 1042: 41-50. https://doi.org/10.3897/zookeys.1042.66381
Silva DSM, Josip Skejo, Pereira MR, De Domenico FC, Sperber CF (2017) Comments on the recent changes in taxonomy of pygmy unicorns, with description of a new species of Metopomystrum from Brazil (Insecta, Tetrigidae, Cleostratini, Miriatrini). ZooKeys 702: 1-18. https://doi.org/10.3897/zookeys.702.13981
Skejo J, Connors M, Hendriksen M, Lambert N, Chong G, McMaster I, Monaghan N, Rentz D, Richter R, Rose K, Franjević D (2020) Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys 948: 107-119. https://doi.org/10.3897/zookeys.948.52910
Skejo J, Medak K, Pavlović M, Kitonić D, Miko RJC, Franjević D (2020) The story of the Malagasy devils (Orthoptera, Tetrigidae): Holocerus lucifer in the north and H. devriesei sp. nov. in the south? ZooKeys 957: 1-15. https://doi.org/10.3897/zookeys.957.52565
Tumbrinck, J & Skejo, J. (2027) Taxonomic and biogeographic revision of the New Guinean genus Ophiotettix Walker, 1871 (Tetrigidae: Metrodorinae: Ophiotettigini trib. nov.), with the descriptions of 33 new species. In Telnov D, Barclay MVL, Pauwels OS (Eds) Biodiversity, biogeography and nature conservation in Wallacea and New Guinea (Volume III). The Entomological Society of Latvia, Riga, Latvia, 525-580.
As someone who enjoys taking regular long walks, listening to podcasts has always been an irreplaceable source of pleasure for me. As an arachnologist and taxonomist, I had been hoping for years that someone would start a podcast dedicated to taxonomy and the discovery of new species. Thankfully, earlier this year Dr. L. Brian Patrick from Dakota Wesleyan University started such a project with the New Species Podcast, and the results are much, much better than what I’d been hoping for. I was particularly delighted when I got invited to the show to talk about a paper in which, together with my colleague Dr. Yuri M. Marusik, we described 17 new species of zodariid spiders from Iran and Turkmenistan.
Loveh region in northern Iran, where Mesiotelus patricki was found. Photo by Barbod Safaei-Mahroo
I first met Brian in person at the 19th International Congress of Arachnology in Taiwan in 2013, where we had a fruitful discussion about various collecting methods for spiders and other arthropods. I personally believe that it is of utmost importance that efforts like Brian’s to popularize taxonomy – especially in these trying times – should be publicly acknowledged. And what better way to acknowledge someone’s efforts in popularizing the discovery of new species than to actually dedicate a new species name to them? For this reason, together with my colleague Dr. Marusik we decided to name one of our newly discovered species of Iranian spiders after Brian, in recognition of his wonderful job on the production of the podcast.
Mesiotelus patricki. Photo by Alireza Zamani
I am deeply moved and flattered that anyone would name a species after me. I think they must have run out of ideas for specific epithets if they’re naming a species after me!
I am glad that the podcast has inspired at least a few people, and I am trying to help more people understand that dozens to hundreds of new species are described almost every day of the year. I want people to understand the process of biodiversity discovery and the lab and field work associated with that process. Most importantly, I hope that people recognize that we are losing species before we can even find them.
L. Brian Patrick
The new species is named Mesiotelus patricki and is a member of the family Liocranidae. Commonly known as spiny-legged sac spiders, this family is relatively poorly studied globally, with less than 300 currently recognized species; most liocranids are free-living ground-dwelling spiders that can be found within the forest litter and under rocks and stones, usually in well-vegetated habitats.
Oh, WOW, I am so deeply moved (I shed a tear!) that my friend and colleague @Persian_spiders named a new spider species after me! Mesiotelus patricki Zamani & Marusik, 2021 in @ZooKeys_Journal, and named to honor me and the @PodcastSpecies work that I have done. Thanks, Alireza! pic.twitter.com/nxYLLEnbOK
Loveh region in northern Iran, where Mesiotelus patricki was found. Photo by Barbod Safaei-Mahroo
In the same paper, we also described a new genus and another nine new species of spiders from Iran. Among these, Brigittea avicenna was named after the preeminent Persian polymath Avicenna, while Zagrotes borna and Zagrotes parla were named using Persian given names, meaning “young” and “glowing”, respectively.
It is noteworthy that all of the specimens used in this study had been collected in the 70s by Austrian and Swiss zoologists, and had been sitting on museum shelves for decades, waiting to be “discovered” and formally described. This clearly demonstrates the importance of natural history museums and the value of their scientific collections, as major institutes around the world house hundreds of thousands of undescribed species that are just out there, waiting to be named. We hope that efforts like Brian’s podcast would bring more attention to taxonomy and discovery of new species, as more and more people and investments are indeed needed in this field to unveil the magnificent biodiversity of our planet.
The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.
Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.
Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.
By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.
On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!
***
Read more about the rationale of the Red List of Taxonomists project.
***
Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag.
“The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous.”
Parasitoid wasps (Hymenoptera) are one of the most species rich animal taxa on Earth, but their tropical diversity is still poorly known. Now, scientists have discovered the Dolichomitus meii and Polysphincta parasitoid wasp species previously unknown to science in South America. The new species found in the rainforests entice with their colours and exciting habits. Researchers at the University of Turku have already described 53 new animal species this year.
Researchers at the Biodiversity Unit of the University of Turku, Finland, study insect biodiversity particularly in Amazonia and Africa. In their studies, they have discovered hundreds of species previously unknown to science. Many of them are exciting in their size, appearance, or living habits.
“The species we have discovered show what magnificent surprises the Earth’s rainforests can contain. The newly discovered Dolichomitus meii wasp is particularly interesting for its large size and unique colouring. With a quick glance, its body looks black but glitters electric blue in light. Moreover, its wings are golden yellow. Therefore, you could say it’s like a flying jewel,” says Postdoctoral Researcher Diego Pádua from the Instituto Nacional de Pesquisas da Amazônia (INPA) in Brazil, who has also worked at the Biodiversity Unit of the University of Turku.
Dolichomitus parasitoid wasps are parasitic on insect larvae living deep in tree trunks. They lay a single egg on the insect larva and the wasp hatchling eats the host larva as it develops.
The Dolichomitus meii wasp was discovered in western Amazonia. Its body looks black but glitters electric blue in light. The wasp lays its eggs on insect larvae living deep in wood. It reaches the host larvae with a long ovipositor. Picture: Filippo De Giovanni and Rodrigo Araújo
“The ovipositor of the Dolichomitus meii wasp is immensely long. It sticks the ovipositor into holes in the wood and tries to find host larvae inside. The species’ striking colouring protects it from birds that prey on insects. They do not snatch the wasp sitting on the tree trunk as they think it will taste bad or that it is dangerous,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku.
Polysphincta Parasitoid Wasps Manipulate the Behaviour of the Host Spider
At the same time as the publication on the Dolichomitus meii species, the researchers published another research article on South American wasp species. The article describes altogether seven new wasp species belonging to the Polysphincta genus.
Polysphincta bonita refers to the species’ beautiful appearance. The species is parasitic on spiders. Picture: Diego Padúa and Ilari E. Sääksjärvi
The Polysphincta parasitoid wasps are parasitic on spiders. The female attacks a spider in its web and temporarily paralyses it with a venomous sting. After this, the wasp lays a single egg on the spider, and a larva hatches from the egg. The larva gradually consumes the spider and eventually pupates.
“The wasps that are parasitic on spiders are extremely interesting as many of them can manipulate the behaviour of the host spider. They can change the way a spider spins its web, so that before its death, the spider does not spin a normal web to catch prey. Instead, they spin a safe nest for the parasitoid wasp pupa,” describes Professor Sääksjärvi.
Researchers at University of Turku Have Already Discovered 53 New Species This Year
The new species are often discovered through extensive international collaboration. This was also the case with the newly published studies.
“For example, the discovery of the Dolichomitus meii species was an effort of six researchers. Moreover, these researchers all come from different countries,” says Professor Sääksjärvi.
The work to map out biodiversity previously unknown to science continues at the University of Turku and there are interesting species discoveries ahead.
“I just counted that, in 2021, the researchers of the Biodiversity Unit at the University of Turku have described already 53 new species from different parts of the globe – and we’re only halfway through the year,” Sääksjärvi announces cheerfully.
Di Giovanni F, Pádua DG, Araujo RO, Santos AD, Sääksjärvi IE (2021) A striking new species of Dolichomitus Smith, 1877 (Hymenoptera: Ichneumonidae; Pimplinae) from South America. Biodiversity Data Journal 9: e67438. https://doi.org/10.3897/BDJ.9.e67438
Pádua DG, Sääksjärvi IE, Spasojevic T, Kaunisto KM, Monteiro RF, Oliveira ML (2021) A review of the spider-attacking Polysphincta dizardi species-group (Hymenoptera, Ichneumonidae, Pimplinae), with descriptions of seven new species from South America. ZooKeys 1041: 137-165. https://doi.org/10.3897/zookeys.1041.65407
New species named after famous novelist Neil Gaiman, musician and human rights activist Peter Gabriel and singer-songwriter Brandi Carlile are among thirty-three new trapdoor spiders described from across North and South America. Following the discovery, published in the openly accessible, peer-reviewed scholarly journal ZooKeys, the known species in the genus Ummidia increased more than twice.
In a recent revision of the trapdoor spider genus Ummidia completed at the University of California, Davis, co-authors Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species found throughout North and South America. Their study is published in the openly accessible, peer-reviewed scholarly journal ZooKeys. A number of these species were named after popular artists, including Neil Gaiman, Peter Gabriel and Brandi Carlile.
“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.
A male Ummidia brandicarlileae from Yucatán, Mexico
The newly described trapdoor spider Ummidia brandicarlileae is named after singer-songwriter and activist Brandi Carlile, and occurs in Yucatán, Mexico, where Carlile’s annual Girls Just Wanna Weekend Festival is held. The event was created to counter the lack of female representation at mainstream music festivals.
A male Ummidia neilgaimani from Roanoke Co., Virginia, U.S.
Similarly, Ummidia neilgaimani is named after fantasy and horror writer, Neil Gaiman, author of a number of fantasy and horror books with spider-based characters, and a particular favorite of Dr. Godwin.
A male Ummidia gabrieli from Baja California Sur, Mexico
In addition to these pop culture references, Godwin and Bond named several species in honor of various people and places. The Pine Rockland trapdoor spider, found in southern Florida, is named after the critically endangered pine rockland habitat in which it is found. Ummidia paulacushingae is named for Dr. Paula Cushing, long-time collaborator and friend of Bond and friend, and mentor to Godwin.
With the names of the new to science species, the authors were also able to shed light on lesser-known historical figures. Ummidia bessiecolemanae is named for Bessie Coleman (1892–1926), the first African American and Native American woman to obtain her pilot’s license.
Trapdoor spiders are unique compared to most of the spiders that we are familiar with in that they don’t use silk to make a web. Instead, they live in burrows lined with silk and covered with a “trapdoor”.
Trapdoor spiders in the genus Ummidia are actually very widespread—they can be found from Maryland west to Colorado through Mexico and Caribbean as far south as Brazil. However, because they spend most of their lives underground, people rarely ever encounter a trapdoor spider. When trapdoor spiders are young, they leave their mother’s burrow and make one of their own. Females will spend their entire lives (which can be decades) in those burrows if they aren’t disturbed, but when a male spider matures (5 to 7 years of age), they emerge in search of females. This is when people are most likely to see them.
“I am continually blown away by how little we know about what is out there living on this planet with us. Most people don’t even realize they are sharing their space with these creatures literally right under their feet”
Dr. Rebecca Godwin
“Given the fact that these spiders tend to have very limited ranges and have very low dispersal, entire species can be winked out of existence without us ever knowing they were here, and I find that kind of heartbreaking. Documenting the diversity of groups like Ummidia gives us knowledge we need to appreciate and conserve the rich and diverse life that surrounds us.”
Research article:
Godwin RL, Bond JE (2021) Taxonomic revision of the New World members of the trapdoor spider genus Ummidia Thorell (Araneae, Mygalomorphae, Halonoproctidae). ZooKeys 1027: 1-165. https://doi.org/10.3897/zookeys.1027.54888
Michigan State entomologists have discovered dozens of new beetle species — and named some after iconic sci-fi heroines
The original Star Trek television series took place in a future when space is the final frontier, but humanity hasn’t reached that point quite yet. As researchers like Michigan State University entomologists Sarah Smith and Anthony Cognato are reminding us, there’s still plenty to discover right here on Earth.
Working in Central and South America, the duo discovered more than three dozen species of ambrosia beetles — beetles that eat ambrosia fungus — previously unknown to science. Smith and Cognato described these new species on June 16 in the journal ZooKeys.
The Spartans also selected an unusual naming theme named in deference to the female beetles who have helped their species survive and thrive by boldly going where they hadn’t before.
Many of the new species are named for iconic female science fiction characters, including Nyota Uhura of “Star Trek”; Kara “Starbuck” Thrace from the 2000s “Battlestar Galactica” TV series; and Katniss Everdeen from “The Hunger Games” books and movies.
The wing coverings of the C. katniss come to an arrowhead-like point, which reminded the researchers of Katniss Everdeen from “The Hunger Games,” shown below. “The Hunger Games” image courtesy of Lions Gate Entertainment Inc.
“But overall, our colleagues think it’s a good thing,” Cognato said. “It gives us a chance to talk about taxonomy — the science of classifying organisms — and about diversity.”
Understanding the world’s biodiversity is one of the major drivers of this and related research. Scientists estimate that there are 10 million nonbacterial species in the world and that humans have classified only about 20% of those.
“And some are lost before they’re ever discovered,” said Smith, who is the curator of the A. J. Cook Arthropod Research Collection. When people disrupt native ecosystems with farming and mining, for example, undiscovered species can face extinction before researchers know about them.
For this project, the team did some of its field work in Peru, where illegal gold miners can be particularly devastating to forests. “They’re turning the forest into a wasteland” Smith said. “It may never recover.”
Working in such threatened areas, Smith and Cognato are helping identify beetle species before it’s too late, as well as characterizing a rich variety of physical traits and behaviors.
To be clear, they did this field work long before the pandemic struck, starting around 2008. But it takes time to perform the thorough investigations required to ensure that a species is indeed distinct from its closely related cousins.
“With South America, it can be really hard to know whether a species is new or not, just because the fauna is so poorly studied,” Smith said.
With the stay-at-home orders in effect, she and Cognato had time to focus on projects that had been simmering on the backburner, such as this one that details ambrosia beetles they had collected belonging to the genus Coptoborus.
These tiny beetles make their homes by boring into trees. Once inside, they sustain their nests by cultivating fungus that serves as food. There, a mother produces many female offspring and one or two dwarfed males. The main job of those males is to mate with their sisters, creating a new generation of females prepared to disperse and produce a new brood. This all leads to another reason for studying these beetles: they can become pests.
These females arrive at trees ready to bore inside, start a fungus farm and reproduce. Though most prefer to nest in dead or dying parts of trees, some can attack fully healthy trees that are ecologically and economically important. For example, there are species within the genus known to attack balsa trees in Ecuador, the world’s leading exporter of balsa wood.
And if tree-dwelling beetles find their way into nonnative habitats, they can pose large threats to trees that have no natural defenses against the insects. Michiganders are all too familiar with the emerald ash borer, which has claimed millions of ash trees in the state. Another nonnative species of fungus-farming beetle devastated redbay laurels and avocado trees in the Southern U.S.
By identifying species abroad, in their native habitats, researchers including Smith and Cognato are helping the U.S. better prepare for if and when a new pest shows up here. And, historically speaking, Coptoborus beetles are hardy travelers.
The researchers thought the C. starbuck‘s appearance gave it a tough persona, leading them to name it for Kara “Starbuck” Thrace from “Battlestar Galactica,” shown on the right. “Battlestar Galactica” image courtesy of NBC Universal.
Their ancestors originated about 20 million years ago, likely in Southeast Asia, before emigrating and making homes across much of the tropics.
“That’s one of the reasons we chose to name them after female sci-fi characters. Not to anthropomorphize too much, but you have these adventurous females that were blown off their log or had their wood-encased home thrown into the ocean by a mudslide,” Cognato said. If these mated females made it to a new land, they could start a new population, allowing the species to proliferate.
“Along the way, there were so many ways to die, but they ended up colonizing an entire continent.”
Fast forward to now and there are thousands of ambrosia beetle species, including more than 70 of the Coptoborus genus — and counting. In christening the new beetles, Smith and Cognato got some inspiration by finding similarities between the beetle and its namesake.
For instance, the C. uhura was given its name because its reddish color, reminiscent of the uniform worn by Nichelle Nichols’s Uhura character in the original “Star Trek” TV series.
The C. uhura’s reddish hue reminded the researchers of the uniform worn by Lt. Uhura in the original “Star Trek” television series, shown below. “Star Trek” image courtesy of CBS Studios Inc.
And Sigourney Weaver’s Ellen Ripley character in the “Alien” film franchise had a shaved head in the movie “Alien 3.” One of the beetles, now named C. ripley, was also glabrous, or without hair.
The C. ripley is glabrous, which means hairless, reminding the researchers of Ellen Ripley and her shaved head in “Alien 3,” shown on the right. “Alien 3” image courtesy of Twentieth Century Fox.
Other names were selected because the duo just liked the characters and found them inspiring. For example, the C. scully beetle was named after Dana Scully, Gillian Anderson’s character on “The X-Files.”
The character is also behind what’s known as the “Scully Effect.” By showing a successful female scientist on TV, the show helped raise awareness of science, technology, engineering and mathematics — or STEM — professions among young women.
In their paper, Smith and Cognato wrote, “We believe in the ‘Scully Effect’ and hope future female scientists, real and fictional, continue to inspire children and young adults to pursue STEM careers.”
Smith and Cognato also took the opportunity to name some beetles in honor of real-life people who have made an impact on their work and their lives.
For example, the C. erwini, is named after a renowned entomologist and friend Terry Erwin, who passed away in 2020. Erwin helped popularize a technique called canopy fogging to collect beetle specimens living in treetops.
Coptoboruserwini
“Without his dedication to canopy fogging, this species and most of those described in this publication may never have been discovered,” Smith and Cognato wrote in their study, which is part of a special issue in memory of Erwin, who was also editor-in-chief of ZooKeys.
Also, the C. bettysmithae is named after Smith’s grandmother, Catherine “Betty” Smith. Sarah remembers Betty’s incredible strength in battling cancer and her help fostering her granddaughter’s scientific interest.
Some of the beetles were named for real-life inspirations, like the C. bettysmithae, named for Sarah Smith’s grandmother, Catherine “Betty” Smith.
“My grandmother supported me a lot with entomology,” Smith said. “I used to spend many weekends with her, and she’d take me out to catch dragonflies.”
Now, she and Cognato are out catching and characterizing insects that are new to science. In doing so, they’re helping protect native ecosystems, painting a more complete picture of the planet’s bountiful biodiversity and even drawing some attention to the power of naming and classifying things.
“Taxonomy was probably one of the first sciences of humans. You can find evidence of it throughout history and across cultures,” Cognato said.
This naming likely started so humans could easily share information about which plants were safe to eat and which animals were dangerous. This is still valuable information today, but naming has evolved to help us appreciate even more dimensions of life on Earth.
Think about being a kid in a park or backyard, Cognato said, and the innate desire to know and name the animals there, say, robins or squirrels. Classification builds connection.
“It helps us communicate and it helps us live better,” Cognato said. “It helps us understand the world and biodiversity.”
Original source:
Smith SM, Cognato AI (2021) A revision of the Neotropical genus Coptoborus Hopkins (Coleoptera, Curculionidae, Scolytinae, Xyleborini). In: Spence J, Casale A, Assmann T, Liebherr JК, Penev L (Eds) Systematic Zoology and Biodiversity Science: A tribute to Terry Erwin (1940-2020). ZooKeys 1044: 609-720. https://doi.org/10.3897/zookeys.144.62246