BiCIKL project sums up outcomes and future prospects at a Final GA in Cambridge

On multiple occasions, the participants agreed that the Biodiversity Knowledge Hub must be the flagship outcome of BiCIKL. 

The city of Cambridge and the Wellcome Campus hosted the Final General Assembly of the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library): a 36-month endeavour that saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields. Consortium members who could not attend the meeting in Cambridge joined the meeting remotely.

The 3-day meeting was organised by local hosts European Molecular Biology Laboratory (EMBL) and ELIXIR in collaboration with Pensoft Publishers.

After a welcome cocktail reception on Monday evening at Hilton Cambridge City Centre, on Tuesday, the consortium made an early start with a recap of BiCIKL’s key milestones and outputs from the last three years. All Work Package leaders had their own timeslot to discuss the results of their collaborations.  

They all agreed that the Biodiversity Knowledge Hub – the one-stop portal for understanding the complex – yet increasingly interconnected landscape of biodiversity research infrastructures – is likely the flagship outcome of BiCIKL. 

Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers at the BiCIKL’s third and final General Assembly in Cambridge, United Kingdom.

In the afternoon, the participants focused on the services developed under BiCIKL. Amongst the many services resulting from the project some were not originally planned. Rather those were the ‘natural’ products of the dialogue and collaboration that flourished within the consortium throughout the project. “A symptom of passion,” said Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers.

An excellent example of one such service is what the partners call the “Biodiversity PMC”, which brings together biodiversity literature from thousands of scholarly journals and over 500,000 taxonomic treatments, in addition to the biomedical content available from NIH’s PubMed Central, into the SIB Literature Services (SIBiLS) database. What’s more, users at SIBiLS – be it human or AI – can now use advanced text- and data-mining tools, including AI-powered factoid question-answering capacities, to query all this full-text indexed content and seek out, for example, species traits and biotic interactions. Read more about the “Biodiversity PMC” in its recent official announcement.

Far from being the only one, the “Biodiversity PMC” is in good company: from the blockchain-based technology of LifeBlock to the curation of the DNA sequences by PlutoF, the BiCIKL project consortium takes pride in having developed twelve services dedicated to FAIR and linked ready-to-use biodiversity data. 

All those services are already listed in the FAIR Data Place within the Biodiversity Knowledge Hub, where each is presented with its own video. For many services, from the same page, visitors can also download factsheets meant to serve as user guidelines. All will also be featured in the EOSC catalogue.

All services developed under BiCIKL with links to their explanatory videos:

On Wednesday, the consortium focused on BiCIKL’s activities from the Transnational and Virtual Access Pillar, which included both presentations by each open call leader and VA leader, as well as open discussions and a recap of what the teams have learnt from these experiences. 

A panel discussion took place on Thursday as part of an open event, where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus.

Thursday was dedicated to an open event where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus. You can find the agenda on BiCIKL’s website.

After 36 months of action, the BiCIKL project will officially end in April 2024, but does it mean that all will be done and dusted come May 2024? Certainly not, point out the partners. 

To ensure that the Biodiversity Knowledge Hub will not only continue to exist but will not cease to grow in both use and participation, the one-stop portal will remain under the maintenance of LifeWatch ERIC. 

In conclusion, we could say that an appropriate payoff for the project is “Stick together!” as put by BiCIKL’s Joint Research Activity Leader Dr. Quentin Groom.

Final words at the third and last General Assembly of the BiCIKL project.

You can find highlights from the BiCIKL General Assembly meeting on X via the #BiCIKL_H2020 hashtag (in association with #Cambridge and #finalGA)

All research outputs, including the approved grant proposal, policy briefs, guidelines papers and research articles associated with the project, remain openly accessible from the BiCIKL project outcomes collection in RIO Journal: https://doi.org/10.3897/rio.coll.105.

***

All BiCIKL project partners:

Why two prehistoric sharks found in Ohio got new names

Research leads to rediscovery of forgotten fossils.

Until recently, Orthacanthus gracilis could have been considered the “John Smith” of prehistoric shark names, given how common it was.

Three different species of sharks from the late Paleozoic Era – about 310 million years ago – were mistakenly given that same name, causing lots of grief to paleontologists who studied and wrote about the sharks through the years and had trouble keeping them apart.

But now Loren Babcock, a professor of earth sciences at The Ohio State University, has finished the arduous task of renaming two of the three sharks – and in the process rediscovered a wealth of fossil fishes that had been stored at an Ohio State museum for years but had been largely forgotten.

Loren Babcock with a collection of Orton Museum’s fossil fishes, including several from John Newberry. Photo by The Ohio State University

In order to change the names, Babcock had to go through a process governed by the International Commission on Zoological Nomenclature (ICZN). He had to document the need to change the names, propose new names and submit them to an ICZN-recognized journal for peer review and then have the ICZN officially accept the names.

Tooth of the shark Orthacanthus lintonensis. The tooth is about 13 mm long.

“It was one of the most complex naming problems we have had in paleontology, which is probably one reason no one attempted to fix it until now,” Babcock said.

“A lot of scientists in the field have written, thanking me for doing this. We are all happy it is finally done,” he said.

One measure of the impact the renaming has had on the field: Babcock’s paper announcing the new names was just published in the journal ZooKeys on Jan. 8, but it has already been referenced on seven different Wikipedia pages.

The original Orthacanthus gracilis fossil was found in Germany and named in 1848. That species gets to keep the name.

The remaining two fossils were found in Ohio and named by the famous American paleontologist John Strong Newberry in 1857 and 1875.

Portrait of John Strong Newberry

Babcock renamed the Ohio sharks Orthacanthus lintonensis and Orthacanthus adamas, both based on the name of the place where they were originally found.

Why did Newberry give the two Ohio sharks the same name?

“He probably just forgot. It was nearly 20 years between the time the two species were named,” Babcock said.

And as far as giving it the same name as a German species: “In those days, it was really difficult to search for names that were already in existence – they did not have the internet.”

The sharks themselves were fascinating creatures, Babcock said.  They were large and creepy, nearly 10 feet long, and looked more like eels than present-day sharks, with long dorsal fins extending the length of their backs and a peculiar spine extending backward from their heads.

They lived in the fresh or brackish water of what are known as “coal swamps” of the late Carboniferous Period (323-299 million years ago) during the late Paleozoic Era. They belong to an extinct group of chondrichthyans (which includes sharks, skates and rays) called the xenacanthiforms.

Dorsal spine of Orthacanthus adamas. The spine is about 71 mm long.

Newberry was for a time the chief geologist at the Geological Survey of Ohio. He played an important role in the early growth of what is now the Orton Geological Museum at Ohio State.

Babcock, who is the current director of the Orton Museum, decided to begin the renaming process after reviewing the museum’s collection. He was surprised to see how many fossils the museum had that had been collected by Newberry, including the two prehistoric sharks.

Babcock wrote about Orton’s Newberry collection in a new article published in the Journal of Vertebrate Paleontology.

Through the years, scientists have written about how various Newberry specimens had been lost. It turns out many had been at the Orton Museum.

“No museum has a larger collection of Newberry’s fossils except for the American Museum of Natural History in New York City,” Babcock said.

“Not a lot of people are aware of that – I did not even know the extent of our collection. If you’re looking for part of the Newberry collection and can’t find it in the American Museum of Natural History, it is probably going to be here.”

Research article:

Babcock LE (2024) Replacement names for two species of Orthacanthus Agassiz, 1843 (Chondrichthyes, Xenacanthiformes), and discussion of Giebelodus Whitley, 1940, replacement name for Chilodus Giebel, 1848 (Chondrichthyes, Xenacanthiformes), preoccupied by Chilodus Müller & Troschel, 1844 (Actinopterygii, Characiformes). ZooKeys 1188: 219-226. https://doi.org/10.3897/zookeys.1188.108571

News piece originally published by the Ohio State University. Republished with permission.

Follow ZooKeys on Facebook and X.

A new species of rare pseudoscorpion named after the Slovak president

Olpium caputi, named after Zuzana Čaputová, was discovered on the island Tahiti in French Polynesia

There are about 25,000 islands in the Pacific Ocean. The most remote of them are in North and East Polynesia, the Hawaiian Islands, and French Polynesia. Biologists have been attracted to these regions since the 18th century, but French Polynesia has received much less attention compared to the Hawaiian Islands.

A view of the area where Olpium caputi was found. Photo by Frédéric A. Jacq

Contributions to our knowledge of the pseudoscorpions of French Polynesia date from the 1930s and are associated with the Pacific Entomological Survey. Since then, the French Polynesian pseudoscorpion fauna has consisted of only four known species.

A female individual of Olpium caputi.

Thanks to international cooperation, a team of enthusiastic scientists has published the first discovery of a new species of pseudoscorpion from French Polynesia. Between 2017 and 2020, they studied French Polynesia’s fauna and environment for the French Polynesian Agricultural Service and as a part of a large-scale survey of arthropods. During their research work, they collected a few pseudoscorpion specimens on Huahine and Tahiti in the Society Islands.

Among them is a new species named Olpium caputi, collected by sieving moss at 1,450 m about sea level on the Mont Marau Summit, Tahiti, one of the Society Islands archipelago. Its scientific name honours Zuzana Čaputová, the President of Slovakia.

Zuzana Čaputová. Photo by Jindřich Nosek (NoJin) under a CC BY-SA 4.0 license.

“As a female leader, she takes a strong stance and supports women and scientists. Even in the 21st century, women in science or top positions are rare. The rarity of the research in French Polynesia, the uniqueness of the discovery, and the fact that the new species is a female, led us to name it after this inspiring woman who can be a role model of courage and perseverance for many women,” says Jana Christophoryová, who led the study.

The paper is published in the open-access, peer-reviewed journal ZooKeys.

The team:

Katarína Krajčovičová of Bratislavské regionálne ochranárske združenie – BROZ, Bratislava, and Jana Christophoryová of Comenius University, Bratislava, are both zoologists, who specialize in the taxonomy, distribution, and ecology of pseudoscorpions. Frédéric Jacq, botanist, and Thibault Ramage, entomologist, are independent naturalists who have been working on improving the faunistic and taxonomic knowledge of French Polynesia for over 15 years.

Research article:

Krajčovičová K, Ramage T, Jacq FA, Christophoryová J (2024) Pseudoscorpions (Arachnida, Pseudoscorpiones) from French Polynesia with first species records and description of new species. ZooKeys 1192: 29-43. https://doi.org/10.3897/zookeys.1192.111308

Towards the “Biodiversity PMC”: a literature database supporting advanced content queries

The indexing is one of the major outcomes from the partnerships within the Horizon 2020-funded project Biodiversity Community Integrated Knowledge Library (BiCIKL)

Amongst the major outcomes from the currently nearly completed Horizon 2020-funded project Biodiversity Community Integrated Knowledge Library (BiCIKL) – dedicated to making biodiversity data FAIR and bi-directionally linked – brings the SIB Literature Services (SIBiLS) database one step closer to solidifying its “Biodiversity PMC” portal and working title.

In a joint effort between the Swiss-based Text Mining group of Patrick Ruch at SIB (developing SIBiLS), the text- and data-mining association Plazi and scientific publisher Pensoft, the long-time collaborators have started feeding full-text content of over 500,000 taxonomic treatments extracted by Plazi and tens of thousands full-text articles from 40 well-renowned biodiversity journals published by Pensoft to the SIBiLS database. 

What this means is that users at SIBiLS – be it human or AI – have now gained access to advanced text- and data-mining tools, including AI-powered factoid question-answering capacities, to query all this full-text indexed content and seek out, for example, species traits and biotic interactions.

To index and directly feed the content from its 40+ academic outlets at SIBiLS, Pensoft relies on advanced and full-text TaxPub JATS XML journal publication workflow, powered by the ARPHA publishing platform. Meanwhile, Plazi uses its GoldenGate text- and data-mining software to harvest taxon treatments from over 80 journals stored at TreatmentBank and the Biodiversity Literature Repository, and then further re-used by GBIF, OpenBiodiv and now by SiBILS.

Seen as a pilot, the indexing – the partners believe – could soon be extended with other journals relying on modern publishing or converted legacy publications. 

In fact, ever since its launch in 2020, the queryable database SIBiLS has been retrieving relevant full-text papers directly from the NIH’s PubMed Central, including Pensoft’s ZooKeysPhytoKeysMycoKeysBiodiversity Data Journal and Comparative Cytogenetics

However, there were still gaps left to bridge before SIBiLS could indeed be dubbed “the Biodiversity PMC”, and those have mostly been about volume and breadth of content. While the above-mentioned five journals by Pensoft had long been indexed by SIBiLS through harvesting PMC, those had been quite an exception since, several years ago, a reorganisation at PMC moved the focus of the database to almost exclusively biomedical content, thus leaving biodiversity journals out of the scope of the database.

In the meantime, while Plazi has been feeding SIBiLS a growing volume of taxonomic treatments and visual data, as it was exponentially increasing the number of publishers and journals it mined data from, a lot of biodiversity data (e.g. genetic, molecular, ecological) published in the article narratives that were not taxon treatments could not make it to the portal.

“We all know the advantages and practical uses PMC offers to its users, so we cannot miss the opportunity to incorporate this well-proven approach to navigate the data deluge in biodiversity science. Undoubtedly, it is an extremely ambitious and demanding task. Yet, I believe that, at the BiCIKL consortium, we have made it pretty clear we have the necessary expertise, know-how and aspiration to take on the challenge,”

said Prof. Lyubomir Penev, founder/CEO at Pensoft and project coordinator of BiCIKL.

“For far too long, scientific knowledge about biodiversity has been imprisoned in a continuously growing corpus of scientific outputs, which – most of the time – are published in unstructured formats, such as PDF, or as paywalled content, and often locked by both! This means that they are – at best – difficult to access and comprehend by computer algorithms. In the meantime, we need all that knowledge, in order to accelerate our understanding of the dynamics of the global biodiversity crisis and to efficiently assess the impact of climate change. This is why the need for advanced workflows and tools to annotate, mine, query and discover new facts from the available literature is more than obvious,”

added Dr. Donat Agosti, President at Plazi.

“In the course of the BiCIKL project, at SIBiLS, we started indexing a larger set of biodiversity-related contents in the broad sense, including environmental sciences and ecology, to build a new literature database, or what we now call ‘Biodiversity PMC’. Now, with the help of Plazi and Pensoft, we provide a unique entry point to half a million taxonomic treatments, which were not included into the original PubMed Central. Next on the list is to expand our network of literature sources and continue this exponential growth of queryable biodiversity knowledge to turn Biodiversity PMC into the “One Health” library. We promise to keep you posted,”

said Dr. Patrick Ruch, Group Leader at SIB and Head of Research at HES-SO, HEG Geneva, Switzerland. 

***

Follow BiCIKL Project on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

***

About the SIB Swiss Institute of Bioinformatics:

SIB is an internationally recognized non-profit organisation, dedicated to biological and biomedical data science. SIB’s data scientists are passionate about creating knowledge and solving complex questions in many fields, from biodiversity and evolution to medicine. They provide essential databases and software platforms as well as bioinformatics expertise and services to academic, clinical, and industry groups. With the recent creation of the Environmental Bioinformatics group, led by Robert Waterhouse, SIB is engaged in an unprecedented effort to streamline data across molecular biology, health and biodiversity. SIB also federates the Swiss bioinformatics community of some 900 scientists, encouraging collaboration and knowledge sharing.

***

About Plazi:

Plazi is an association supporting and promoting the development of persistent and openly accessible digital taxonomic literature. To this end, Plazi maintains TreatmentBank, a digital taxonomic literature repository to enable archiving of taxonomic treatments; develops and maintains TaxPub, an extension of the National Library of Medicine / National Center for Biotechnology Informatics Journal Article Tag Suite for taxonomic treatments; is co-founder of the Biodiversity Literature Repository at Zenodo, participates in the development of new models for publishing taxonomic treatments in order to maximise interoperability with other relevant cyberinfrastructure components such as name servers and biodiversity resources; and advocates and educates about the vital importance of maintaining free and open access to scientific discourse and data. Plazi is a major contributor to the Global Biodiversity Information Facility.

Pensoft collaborates with R Discovery to elevate research discoverability

Pensoft and R Discovery’s innovative connection aims to change the way researchers find academic articles.

Leading scholarly publisher Pensoft has announced a strategic collaboration with R Discovery, the AI-powered research discovery platform by Cactus Communications, a renowned science communications and technology company. This partnership aims to revolutionize the accessibility and discoverability of research articles published by Pensoft, making them more readily available on R Discovery to its over three million researchers across the globe.

R Discovery, acclaimed for its advanced algorithms and an extensive database boasting over 120 million scholarly articles, empowers researchers with intelligent search capabilities and personalized recommendations. Through its innovative Reading Feed feature, R Discovery delivers tailored suggestions in a format reminiscent of social media, identifying articles based on individual research interests. This not only saves time but also keeps researchers updated with the latest and most relevant studies in their field.

Open Science is much more than cost-free access to research output.

Lyubomir Penev

One of R Discovery’s standout features is its ability to provide paper summaries, audio readings, and language translation, enabling users to quickly assess a paper’s relevance and enhance their research reading experience significantly.

With over 2.5 million app downloads and upwards of 80 million journal articles featured, the R Discovery database is one of the largest scholarly content repositories.

At Pensoft, we do realise that Open Science is much more than cost-free access to research outputs. It is also about easier discoverability and reusability, or, in other words, how likely it is for the reader to come across a particular scientific publication and, as a result, cite and build on those findings in his/her own studies. By feeding the content of our journals into R Discovery, we’re further facilitating the discoverability of the research done and shared by the authors who trust us with their work,” said ARPHA’s and Pensoft’s founder and CEO Prof. Lyubomir Penev.

Abhishek Goel, Co-Founder and CEO of Cactus Communications, commented on the collaboration, “We are delighted to work with Pensoft and offer researchers easy access to the publisher’s high-quality research articles on R Discovery. This is a milestone in our quest to support academia in advancing open science that can help researchers improve the world.

So far, R Discovery has successfully established partnership with over 20 publishers, enhancing the platform’s extensive repository of scholarly content. By joining forces with R Discovery, Pensoft solidifies its dedication to making scholarly publications from its open-access, peer-reviewed journal portfolio easily discoverable and accessible.

Celebrating scientific excellence: Dr. Paul D. N. Hebert awarded the Benjamin Franklin Medal

Dr. Paul D. N. Hebert, known as “the father of DNA barcoding,” has been honoured with the prestigious Benjamin Franklin Medal, a testament to his trailblazing contributions to biodiversity science.

Dr. Paul D. N. Hebert. Photo credit Åge Hojem, NTNU Vitenskapsmuseet/NTNU University Museum, used under a CC BY 2.0 licence

Dr. Hebert’s innovative work has advanced our understanding of global biodiversity, making the identification of species easier, which in turn helps support global conservation efforts. By devising a method that allows the quick and efficient discerning of species, he has transformed biodiversity science.

DNA barcoding has many applications in the classification and monitoring of biodiversity. It can help protect endangered species, control agriculture pests, and identify disease vectors.

Founder and Director of the Centre for Biodiversity Genomics and Chief Executive Officer of the International Barcode of Life consortium (iBOL), Dr. Hebert is one of the leading voices of today’s biodiversity innovation and research.

Dr. Hebert is also chair of the advisory board of Pensoft’s journal Metabarcoding and Metagenomics. He has authored 13 papers in ZooKeys, substantially contributing to untangling the taxonomy of braconid wasps, butterflies, and other insects.

Acylomus ergoti, one of the many insect species Dr. Hebert has worked on.

His work has also appeared in other Pensoft-published journals, such as Biodiversity Data Journal, Nota Lepidopterologica, and Deutsche Entomologische Zeitschrift.

His innovative approach has sparked discussions and debates around the role of novel methodologies in taxonomy.

Dr. Hebert’s recognition with the Benjamin Franklin Medal demonstrates the critical role of biodiversity studies in dealing with global challenges such as the biodiversity crisis. He has inspired a generation of scientists to push the boundaries of knowledge and drive innovation in research technology.

We at Pensoft extend our heartfelt congratulations to Dr. Paul D. N. Hebert on this well-deserved recognition. He continues to lead the way in unravelling the complexities of global biodiversity.

New reptile on the block: A new agamid lizard species discovered in China

Measuring less than 9 cm with an orange tongue, it inhabits subtropical and tropical forests, thriving in various landscapes including urban areas.

A new agamid joins Asia’s rich reptile fauna, officially described as new to science in the open-access journal ZooKeys.

Calotes wangi.

“From 2009 to 2022, we conducted a series of field surveys in South China and collected a number of specimens of the Calotes versicolor species complex, and found that the population of what we thought was Calotes versicolor in South China and Northern Vietnam was a new undescribed species and two subspecies,” says Yong Huang, whose team described the new species.

Calotes wangi hainanensis, a newly discovered subspecies of Calotes wangi.

Wang’s garden lizard (Calotes wangi) is less than 9 cm long, and one of its distinguishing features is its orange tongue.

Calotes wangi is found in subtropical evergreen broad-leaved forests and tropical monsoon forests in southern China and northern Vietnam, mostly in mountainous areas, hills and plains on forest edges, arable land, shrub lands, and even urban green belts. It is active at the edge of the forest, and when it is in danger, it rushes into bushes or climbs tree trunks to hide. Investigations found that the lizards lie on sloping shrub branches at night, sleeping close to the branches,” says Yong Huang.

Calotes wangi.

It is active from April to October every year, while in the tropics it is active from March to November or even longer, and eats a variety of insects, spiders, and other arthropods.

For now, the researchers estimate that the new species is not threatened, but they do note that in some areas its habitat is fragmented.

Images of Calotes wangi’s habitat.

“In addition, their bodies are used medicinally and the lizards are also eaten,” they write in their research paper.

This is why they suggest that the local government strengthen the protection of their ecological environment and pay close attention to the population dynamics.

Research article:

Huang Y, Li H, Wang Y, Li M, Hou M, Cai B (2023) Taxonomic review of the Calotes versicolor complex (Agamidae, Sauria, Squamata) in China, with description of a new species and subspecies. ZooKeys 1187: 63-89. https://doi.org/10.3897/zookeys.1187.110704

Follow ZooKeys on Facebook and X.

Pensoft 2023 review: A year of pioneering research

To celebrate a successful year, Pensoft gives thanks and reflects on the achievements of key journals in 2023.

As the new year approaches, we take a moment to look back on a great year for several of Pensoft‘s key journals.

The following videos were created as part of the #Pensoft2023Review campaign and present the journals’ achievements this year.

ZooKeys

PhytoKeys

MycoKeys

Biodiversity Data Journal

NeoBiota

Nature Conservation

One Ecosystem

Metabarcoding and Metagenomics

Evolutionary Systematics

Looking forward to 2024

Despite the success of 2023, the Pensoft team is keener than ever to improve in every aspect in the coming year. A massive thank you to every author, editor, reviewer and reader of Pensoft’s journals, and a very happy New Year!

***

Follow Pensoft on social media:

Same and different: A new species of pit viper from Myanmar

In a collaborative study involving institutions from Singapore, Malaysia, Germany, and the UK, scientists have discovered a new species of pit viper from Myanmar that is both similar and different from its adjacent sister species.

Finding and describing new species can be a tricky endeavor. Scientists typically look for distinctive characters that can differentiate one species from another. However, variation is a continuum that is not always easy to quantify. At one extreme, multiple species can look alike even though they are different species—these are known as cryptic species. At the other extreme, a single species can be highly variable, creating an illusion of being different species. But what happens when you encounter both extremes simultaneously?

Herpetologist Dr Chan Kin Onn (previously at the Lee Kong Chian Natural History Museum, Singapore, now with the University of Kansas Biodiversity Institute and Natural History Museum, USA) led a study describing a new species of pit viper from Myanmar that is both similar and different from its sister species. The discovery is published in the open-access journal ZooKeys.

A specimen of Trimeresurus ayeyarwadyensis from the Yangon Region, Myanmar. Photo by Wolfgang Wüster

“Asian pit vipers of the genus Trimeresurus are notoriously difficult to tell apart, because they run the gamut of morphological variation. Some groups contain multiple species that look alike, while others may look very different but are actually the same species,” they say.

A specimen of Trimeresurus ayeyarwadyensis from the Yangon Region, Myanmar. Photo by Wolfgang Wüster

The redtail pit viper (Trimeresurus erythrurus) occurs along the northern coast of Myanmar and is invariably green with no markings on its body. A different species called the mangrove pit viper (Trimeresurus purpureomaculatus) occurs in southern Myanmar. This species typically has distinct dorsal blotches, and incredibly variable dorsal coloration including gray, yellow, brown, and black, but never green. Interestingly, in central Myanmar, sandwiched between the distribution of the redtail pit viper and the mangrove pit viper, a unique population exists that is green with varying degrees of blotchiness, which appears to be a blend between the redtail pit viper and the mangrove pit viper.

“This mysterious population in central Myanmar baffled us and we initially thought that it could be a hybrid population,” the researchers said. In a separate paper, Dr Chan used modern genomic techniques and determined that the population in central Myanmar was actually a distinct species and not a hybrid population.

But this was not the end of the story. The researchers discovered another surprise when they examined the snake’s morphological features: they found that the new species was also highly variable. Certain populations are dark green with distinct blotches, easily distinguishable from its closest relative, the redtail pit viper, which is bright green with no blotches. However, some populations of the new species are bright green with no blotches and look virtually identical to the redtail pit viper.

“This is an interesting phenomenon, where one species is simultaneously similar and different from its closest relative (the redtail pit viper). We think that at some point in the past, the new species may have exchanged genes with the redtail pit viper from the north and the mangrove pit viper from the south,” says Dr Chan.

The new species is called the Ayeyarwady pit viper (Trimeresurus ayeyarwadyensis) in reference to the Ayeyarwady River, which is the largest and one of the most important rivers in Myanmar. The river forms an expansive delta that is bounded by the Pathein River to the west and the Yangon River to the east. These rivers and their associated basins also mark the westernmost and easternmost distribution boundaries of the Ayeyarwady pit viper.

Research article:

Chan KO, Anuar S, Sankar A, Law IT, Law IS, Shivaram R, Christian C, Mulcahy DG, Malhotra A (2023) A new species of pit-viper from the Ayeyarwady and Yangon regions in Myanmar (Viperidae, Trimeresurus). ZooKeys 1186: 221-234. https://doi.org/10.3897/zookeys.1186.110422

Follow ZooKeys on X and Facebook.

Ecuador’s newest tarantulas: just discovered, two new species face imminent threats

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species from the slopes of the Andes in the western part of the country.

In the depths of Ecuador’s wilderness, scientists have unveiled the presence of two new tarantula species. Researchers of Universidad San Francisco de Quito found them on trees on the slopes of the Andes in the western part of the country.

Meet Ecuador’s newest tarantulas

One of them was found in late February 2023, 1.5 m above the forest floor in the foothill evergreen forest of the Cordillera Occidental . Just discovered, it is already seriously threatened as people use its habitat for mining and agriculture. Its scientific name reflects this vulnerability: the tarantula is called Psalmopoeus chronoarachne, from the Greek words for “time” and “spider.”

Psalmopoeus chronoarachne.

“The compound word refers to the adage that these spiders could ‘have their time counted’ or reduced by impactful anthropogenic activities. The name addresses conservation concerns about the survival and prevalence of spider species in natural environments,” they write in their paper, which was just published in the open-access journal ZooKeys.

The other newly discovered tarantula has an even more curious name: Psalmopoeus satanas. “It is appropriately named because the initial individual that was collected had an attitude!” says researcher Roberto J. León-E, who first spotted it in a bamboo fence in San José de Alluriquín. The spider immediately exhibited defensive behavior; “this behavior then transformed into fleeing, where the spider made quick sporadic movements, nearly too fast to see.”

Psalmopoeus satanas.

It was the first tarantula he ever caught.

“The members of the Mygalomorphae Research Group in the Laboratory of Terrestrial Zoology at Universidad San Francisco de Quito grew very fond of this individual during its care, in spite of the individual’s bad temperament and sporadic attacks (reason for the nickname),” he writes in the paper.

The species, which can be found in in the north of the Cordillera Occidental of the Andes at about 900 m above sea level, is facing serious threats as its habitat is degraded, ever declining, and severely fragmented by cropland and mining concessions and expanding urban and agricultural territories.

Critically endangered: threats to tarantula survival

“It is important to consider that the areas in which these arthropods live are not under legal protection. The implementation of protected areas in these localities is essential to maintain the remaining population of these endangered species and to encourage research on the remaining undescribed or unknown tarantula species in the area,” says Pedro Peñaherrera-R, who led the research on these animals.

Mining concessions in Ecuador.Credit José Manuel Falcón-Reibán

This makes the region highly vulnerable to both legal and illegal mining operations that extract metals such as copper, silver, and gold, introducing pollutants to its ecosystems.

The implementation of stricter regulations and penalties for illegal mining or other extracting-related activities, including specimen smuggling, might help these species survive. Likewise, the engaging and educating of local communities about the importance of biodiversity conservation is essential to avoid further extinction.

 “We encourage future work by Ecuadorian and international researchers, organisations, and governments to effectively understand the reality about the threat of tarantula smuggling and the required conservation status of each species in the country.” Says Roberto J. León-E.

Based on initial conservation assessments, both tarantulas meet the criteria for being considered Critically Endangered by International Union for Conservation of Nature.

Overview of the ecosystem of both species. Credit Naia Andrade Hoeneisen

“It is essential to consider the potential loss of both P. chronoarachne and P. satanas and the ecological consequences that would result from their extinctions. These species may serve essential roles in the stratified micro-ecosystems in their respective areas,” the researchers write in their paper.

The dark side: illegal trade in wild tarantulas

Illegal trade in wild tarantulas as pets is also a latent threat, not only to these two species, but to Ecuadorian tarantulas in general. Many tarantula species can be found for sale online on various websites and Facebook groups. “During the writing of this article and the publication of another article, we found that a species that we described (Neischnocolus cisnerosi) is currently in the illegal pet trade!” says Pedro Peñaherrera-R.

After studying papers on wild-caught pet-trade specimens, the researchers conclude that the issue has been going on for more than 30 years in the country. “Although this series of publications encouraged research on Ecuadorian tarantulas previously ignored for centuries, they also functioned as catalysts within the exotic pet-trade hobby, aiding in obtaining these species and further encouraging people to collect undescribed species,” says Pedro Peñaherrera-R with concern.

Original source:

Peñaherrera-R. P, León-E. RJ (2023) On Psalmopoeus Pocock, 1895 (Araneae, Theraphosidae) species and tarantula conservation in Ecuador. ZooKeys 1186: 185-205. https://doi.org/10.3897/zookeys.1186.108991