As the new year approaches, we take a moment to look back on a great year for several of Pensoft‘s key journals.
The following videos were created as part of the #Pensoft2023Review campaign and present the journals’ achievements this year.
ZooKeys
PhytoKeys
MycoKeys
Biodiversity Data Journal
NeoBiota
Nature Conservation
One Ecosystem
Metabarcoding and Metagenomics
Evolutionary Systematics
Looking forward to 2024
Despite the success of 2023, the Pensoft team is keener than ever to improve in every aspect in the coming year. A massive thank you to every author, editor, reviewer and reader of Pensoft’s journals, and a very happy New Year!
October and November 2023 were active months for the Pensoft team, who represented the publisherâs journals and projects at conferences in Europe, North America, South America, Oceania and Asia.
Letâs take a look back at all the events of the past two months.
The Biodiversity Information Standards Conference 2023
The annual gathering is a crucial platform for sharing insights, innovations, and knowledge related to biodiversity data standards and practices. Key figures from Pensoft took part in the event, presenting new ways to improve the management, accessibility, and usability of biodiversity data.
Prof. Lyubomir Penev, founder and Chief Executive Officer of Pensoft, gave two talks that highlighted the importance of data publishing. His presentation on “The Biodiversity Knowledge Hub (BKH): A Crosspoint and Knowledge Broker for FAIR and Linked Biodiversity Data” underscored the significance of FAIR (Findable, Accessible, Interoperable, and Reusable) data standards. BKH is the major output from the Horizon 2020 project BiCIKL (Biodiversity Community Integrated Knowledge Library) dedicated to linked and FAIR data in biodiversity, and coordinated by Pensoft.
He also introduced the Nanopublications for Biodiversity workflow and format: a promising new tool developed by Knowledge Pixels and Pensoft to communicate key scientific statements in a way that is human-readable, machine-actionable, and in line with FAIR principles. Earlier this year, Biodiversity Data Journal integrated nanopublications into its workflow to allow authors to share their findings even more efficiently.
Chief Technology Officer of Pensoft Teodor Georgiev contributed to the conference by presenting “OpenBiodiv for Users: Applications and Approaches to Explore a Biodiversity Knowledge Graph.” His session highlighted the innovative approaches being taken to explore and leverage a biodiversity knowledge graph, showcasing the importance of technology in advancing biodiversity research.
The theme of the conference was “Monitoring Biodiversity for Action” and there was particular emphasis on the development of best practices and new technologies for biodiversity observations and monitoring to support transformative policy and conservation action.
Metabarcoding & Metagenomicsâ editor-in-chief, Florian Leese, was one of the organisers of the “Standardized eDNA-Based Biodiversity Monitoring to Inform Environmental Stewardship Programs” session. Furthermore, the journal was represented at Pensoftâs exhibition booth, where conference participants were able to discuss metabarcoding and metagenomics research.
Following the conference, Metabarcoding & Metagenomics announced a new special issue titled âTowards Standardized Molecular Biodiversity Monitoring.â The special issue is accepting submissions until 15th March 2024.
Asian Mycological Congress2023
The Asian Mycological Congress welcomed researchers from around the world to Busan, Republic of Korea, for an exploration of all things fungi from 10-13 October.
Titled “Fungal World and Its Bioexploitation â in all areas of basic and applied mycology,” the conference covered a range of topics related to all theoretical and practical aspects of mycology. There was a particular emphasis on the development of mycology through various activities associated with mycological education, training, research, and service in countries and regions within Asia.
As one of the sponsors of the congress, Pensoft proudly presented a Best Talk award to Dr Sinang Hongsanan of Chiang Mai University, Thailand. The award entitles the winner to a free publication in Pensoft’s flagship mycology journal, MycoKeys.
Joint ESENIAS and DIAS Scientific Conference 2023
The ESENIAS and DIAS conference took place from 11-14 October and focused on “globalisation and invasive alien species in the Black Sea and Mediterranean regions.” Pensoft shared information on their NeoBiota journal and the important REST-COAST and B-Cubed projects.
Polina Nikova of the Bulgarian Academy of Sciences received the NeoBiota Best Talk Award for her presentation titled “First documented records in the wild of American mink (Neogale vision von Schreber, 1776) in Bulgaria.” The award entitles her to a free publication in the NeoBiota journal.
XII European Congress of Entomology
Pensoft took part in the XII European Congress of Entomology (ECE 2023) in Heraklion, Crete, from 16-20 October. The event provided a forum for entomologists from all over the world, bringing together over 900 scientists from 60 countries.
The ECE 2023, organised by the Hellenic Entomological Society, addressed the pressing challenges facing entomology, including climate change, vector-borne diseases, biodiversity loss, and the need to sustainably feed a growing world population. The program featured symposia, lectures, poster sessions, and other types of activities aimed at fostering innovation in entomology. For Pensoft, they were a great opportunity to interact with scientists and share their commitment to advancing entomological research and addressing the critical challenges in the field.
Throughout the event, conference participants could find Pensoftâs team at thir booth, and learn more about the scholarly publisherâs open-access journals in entomology. In addition, the Pensoft team presented the latest outcomes from the Horizon 2020 projects B-GOOD, Safeguard, and PoshBee, where the publisher takes care of science communication and dissemination as a partner.
Hosted for the first time in Mexico, it attracted experts and enthusiasts from around the world. The congress featured plenary speakers who presented cutting-edge research and insights on various aspects of grasshoppers, crickets, and related insects.
Pensoft’s Journal of Orthoptera Research was represented by Tony Robillard, the editor-in-chief, who presented the latest developments of the journal to attendees.
Symposia, workshops, and meetings facilitated discussions on topics like climate change impacts, conservation, and management of Orthoptera. The event also included introductions to new digital and geospatial tools for Orthoptera research.
The 16th International Conference on Ecology and Management of Alien Plant Invasions
4th International ESP Latin America and Caribbean Conference
The 4th International ESP Latin America and Caribbean Conference (ESP LAC 2023) was held in La Serena, Chile, from 6-10 November. Focused on “Sharing knowledge about ecosystem services and natural capital to build a sustainable future,” the event attracted experts in ecosystem services, particularly from Latin America and the Caribbean.
Organised by the Ecosystem Services Partnership, this bi-annual conference was open to both ESP members and non-members, featuring a hybrid format in English and Spanish. Attendees enjoyed an excursion to La Serena’s historical center, adding a cultural dimension to the event.
The conference included diverse sessions and a special recognition by Pensoft’s One Ecosystem journal, which awarded full waivers for publication to the authors of the three best posters.
Magaly Aldave of the Transdisciplinary Center for FES-Systemic Studies claimed first prize with “The voice of children in the conservation of the urban wetland and Ramsar Site Pantanos de Villa in Metropolitan Lima, Peru.” Ana Catalina Copier Guerrero and Gabriela Mallea-Rebolledo, both of the University of Chile, were awarded second and third prize respectively.
The event featured in-person and online participation, catering to a wide audience of researchers, academics, and students. It included workshops, presentations, and discussions, with a focus on enhancing understanding in biosystematics.
Pensoft awarded three student prizes at the event. Putter Tiatragu, Australian National University, received the Best Student Talk award and a free publication in any Pensoft journal for âA big burst of blindsnakes: Phylogenomics and historical biogeography of Australiaâs most species-rich snake genus.â
Helen Armstrong, Murdoch University, received the Best Student Lightning Talk for âAn enigmatic snapper parasite (Trematoda: Cryptogonimidae) found in an unexpected host.â Patricia Chan, University of Wisconsin-Madison, was the Best Student Lightning Talk runner-up for âDrivers of Diversity of Darwiniaâs Common Scents and Inflorescences with Style: Phylogenomics, Pollination Biology, and Floral Chemical Ecology of Western Australian Darwinia (Myrtaceae).â
–
As we approach the end of 2023, Pensoft looks back on its most prolific and meaningful year of conferences and events. Thank you to everyone who contributed to or engaged with Pensoftâs open-access journals, and here’s to another year of attending events, rewarding important research, and connecting with the scientific community.
Content from 20 Pensoft journals will now be automatically added to ResearchGate to reach the research network’s 25 million users. Each journal will also receive a dedicated profile.
ResearchGate, the professional network for researchers, and Pensoft today announced a new partnership that will see a set of Pensoftâs open access journals increase their reach and visibility through ResearchGate â increasing access and engagement with its 25 million researcher members.
As part of this new partnership, 20 journals published by Pensoft – including the publisher’s flagship titles ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal and Research Ideas and Outcomes (RIO Journal) amongst others – will now have their content automatically added to ResearchGate upon publication to benefit from enhanced visibility and discoverability through ResearchGateâs innovative Journal Home offering. These journals will all have dedicated profiles and be prominently represented on all associated article pages on ResearchGate, as well as all other relevant touch points throughout the network.
Journal Home provides a unique opportunity for Pensoft to connect its authors with their readers. The new journal profiles on ResearchGate will provide a central location for each journal, enabling researchers to learn more, discover new article content, and understand how, through their network, they are connected to the journal’s community of authors and editors. Authors of these journals additionally benefit from having their articles automatically added to their ResearchGate profile page, giving them access to metrics, including who is reading and citing their research. These rich insights will also enable Pensoft to build a deeper understanding of the communities engaging with its journals.
âPensoft is delighted to be working with ResearchGate to provide an even greater service to our authors and readers. ResearchGate offers an innovative way for us to grow the reach and visibility of our content, while also giving us a way to better understand and engage our author and reader audiences.â
said Prof Lyubomir Penev, CEO and founder of Pensoft.
âWe couldnât be happier to see Pensoft embark on this new partnership with ResearchGate. Journal Home will not only enable Pensoft authors to build visibility for their work, but provide them and Pensoft with greater insights about the communities engaging with that research. I look forward to seeing this new collaboration developâ
said Sören Hofmayer, co-founder and Chief Strategy Officer at ResearchGate.
About ResearchGate:
ResearchGate is the professional network for researchers. Over 25 million researchers use researchgate.net to share and discover research, build their networks, and advance their careers. Based in Berlin, ResearchGate was founded in 2008. Its mission is to connect the world of science and make research open to all.
For the Pensoft team, September 2023 was a busy and exciting month filled with conferences. Travelling across Europe, they promoted journals, connected with the scientific community, and rewarded exceptional research with free article publications.
Let’s take a look back at all the events of the past month.
The conference looked at evolutionary adaptations from the perspective of behavioural ecology, reproduction biology, genetics, physiology, as well as nature conservation. It particularly focused on the pressing issues of wildlife research and species conservation in the context of global environmental change. Most of the â100 participants were young scientists from more than 30 countries.
The Pensoft team greeted fellow attendees with an exhibition stand and presented the conservation and ecology-focused journals Neobiota, Nature Conservation, One Ecosystem, and Biodiversity Data Journal. Pensoft also advocated for EuropaBon, who are designing an EU-wide framework for monitoring biodiversity and ecosystem services, and REST-COAST, whose mission is to provide the tools to restore environmental degradation of rivers and coasts. Within both European-funded initiatives, Pensoft is a key dissemination partner that contributes expertise in science communication, scholarly publishing, and the development of digital tools and platforms.
Pensoft presented Joao Pedro Meireles from Utrecht University with the Best Poster Award for his research on pair compatibility in okapis, entitling him to a free publication in one of Pensoft’s open-access journals.
âMy study looked at pair compatibility in the zoo breeding programme of Okapi. During breeding introductions, sometimes the male becomes aggressive towards the female and we decided to investigate the potential factors. We ran a survey among all zoos that house the species in Europe and we found that differences in husbandry were linked to the aggressiveness performed by the males.â
Joao Pedro Meireles, Utrecht University
GfĂ Annual Meeting 2023
From the 12th to 16th of September, the German Centre for Integrative Biodiversity Research hosted the 52nd Annual Meeting of the Ecological Society of Germany, Austria and Switzerlandin Leipzig, Germany. The meeting welcomed more than 1,100 participants from around the world, including scientists, policymakers, educators, and environmental enthusiasts.
This yearâs meeting was held with the theme: “The future of biodiversity â overcoming barriers of taxa, realms and scales.” There was a particular emphasis on future challenges and opportunities facing biodiversity, and how to address and manage these in an interdisciplinary and integrative way.
Conference participants were welcomed at the Pensoft stand, where they could learn more about the projects EuropaBon and SELINA, which deal with biodiversity, ecosystem and natural capital topics.
Also in Leipzig, the European Conference on Ecological Modellingtook place between the 4th and 8th of September. The event focused on the transformation of how societies deal with natural resources in a world where biodiversity and ecosystem services are at high risk.
The ECEM 2023 continued a series of conferences launched by the European chapter of ISEM, the International Society for Ecological Modelling. ISEM promotes the international exchange of ideas, scientific results, and general knowledge in the areas of systemsâ analysis and simulations in ecology, and the application of ecological modelling for natural resource management.
The Bundesinstitut fĂŒr Risikobewertung team presented a poster on the Formal Model format and potential new MiDox formats, unique publication types that can be submitted to Pensoftâs Food and Ecological Modelling Journal.
118th Congress of the Italian Botanical Society
Pensoft was proud to sponsor the 118th Congress of the Italian Botanical Society, which took place in Pisa, Italy from the 13th to 16th of September. Experts in various fields of Botany gathered to share their research on the following topics:
Summer may be well and truly over, but as a new academic year begins, Pensoft looks forward to attending more conferences, rewarding more incredible research, and connecting with more of the scientific community. Thank you to everyone who contributed to or engaged with Pensoftâs open-access journals this year, and hereâs to a successful final quarter of 2023.
Researchers have found that advanced DNA technologies can get a detailed snapshot of insect diversity within a birdâs nest, showing everything from the birdâs last meal to disease-causing parasites.
âBirdsâ nests are fascinating microcosms, but until now, studies have only examined the living insects that can be seen crawling and flying around the nests,â says Valerie Levesque-Beaudin, lead author on the study and a leading expert in Diptera taxonomy at the Centre for Biodiversity Genomics (CBG) at the University of Guelph (U of G).
With newer DNA-based methods, researchers can pick up traces of environmental DNA to get a snapshot of all the species in these tiny ecosystems. âThe analysis of nest contents and environmental DNA, or âeDNAâ as itâs called, via metabarcoding helps us to gain more insight into a birdâs diet, parasites, and other factors that could impact a birdâs health and breeding success,â says Levesque-Beaudin.
For the study, published in Metabarcoding and Metagenomics, researchers collected 20 birdsâ nests from the 162-hectare Arboretum at U of G. They examined the nests using DNA barcoding to identify insects to species and DNA metabarcoding to look at the entire nest ecosystem.
Organisms leave traces of DNA behind as they move through the environment, and researchers can use metabarcoding to build a comprehensive picture of life in the nest. Metabarcoding pulls all DNA traces in a bulk sample â in this case, parts of dead insects, debris, and dust from birdsâ nests. This method differs from DNA barcoding, where a single specimen â an insect in this case â is DNA sequenced to identify it to species level.
The CBG team used emergence traps for a first sweep of the nestâs contents followed by a second, deeper probe using DNA metabarcoding to identify all the species encountered in the nest. Researchers passed the nests through a sieve, collecting insect remains and the dust for DNA extraction. âWe not only found insects making a living in the nest, but traces of prey, parasites, and many other things,â says Levesque-Beaudin. âThe most unexpected was the amount of information gained on other birdsâ species whose feathers were either used for nest building or whose nests were essentially overbuilt by the nesting species.â
âThis approach has the potential to revolutionize how we study bird nests as a micro-ecosystem. It unravels connections between different ecological guilds within the nest and connections of the birds with their environment, which would otherwise remain hidden,â says Dr. Bettina Thalinger, senior author of the study.
The CBGâs Associate Director of Analytics, Dr. Dirk Steinke, says the study has positive implications for bird conservation efforts. He says his students have already begun looking at American Kestrels, a threatened bird of prey, to find out if there are clues in the nest communities via metabarcoding and if DNA can help scientists determine if lack of prey or increased parasitism could be among the causes of nestling mortalities.
Galapagos finches are another species threatened by the avian vampire fly â a parasite that attacks nestlings â and treatments include pesticides. Steinke notes that one of his graduate students has begun using DNA metabarcoding in the finchesâ nests to understand better the potential impact of pesticide treatment on the entire arthropod nest community.
Research article:
Levesque-Beaudin V, Steinke D, Böcker M, Thalinger B (2023) Unravelling bird nest arthropod community structure using metabarcoding. Metabarcoding and Metagenomics 7: e103279. https://doi.org/10.3897/mbmg.7.103279
News piece originally published by the Centre of Biodiversity Genomics. Republished with permission.
Novel nanopublication workflows and templates for associations between organisms, taxa and their environment are the latest outcome of the collaboration between Knowledge Pixels and Pensoft.
Nanopublications complement human-created narratives of scientific knowledge with elementary, machine-actionable, simple and straightforward scientific statements that prompt sharing, finding, accessibility, citability and interoperability.
By making it easier to trace individual findings back to their origin and/or follow-up updates, nanopublications also help to better understand the provenance of scientific data.
With the nanopublication format and workflow, authors make sure that key scientific statements – the ones underpinning their research work – are efficiently communicated in both human-readable and machine-actionable mannerin line with FAIR principles. Thus, their contributions to science are better prepared for a reality driven by AI technology.
The machine-actionability of nanopublications is a standard due to each assertion comprising a subject, an object and a predicate (type of relation between the subject and the object), complemented by provenance, authorship and publication information. A unique feature here is that each of the elements is linked to an online resource, such as a controlled vocabulary, ontology or standards.
Now, whatâs new?
As a result of the partnership between high-tech startup Knowledge Pixels and open-access scholarly publisher and technology provider Pensoft, authors in Biodiversity Data Journal (BDJ) can make use of three types of nanopublications:
Nanopublications associated with a manuscript submitted to BDJ. This workflow lets authors add a Nanopublications section within their manuscript while preparing their submission in the ARPHA Writing Tool (AWT). Basically, authors âhighlightâ and âexportâ key points from their papers as nanopublications to further ensure the FAIRness of the most important findings from their publications.
Standalone nanopublication related to any scientific publication, regardless of its author or source. This can be done via the Nanopublications page accessible from the BDJ website. The main advantage of standalone nanopublication is that straightforward scientific statements become available and FAIR early on, and remain ready to be added to a future scholarly paper.
Nanopublications as annotations to existing scientific publications. This feature is available from several journals published on the ARPHA Platform, including BDJ. By attaching an annotation to the entire paper (via the Nanopublication tab) or a text selection (by first adding an inline comment, then exporting it as a nanopublication), a reader can evaluate and record an opinion about any article using a simple template based on the Citation Typing Ontology (CiTO).
Nanopublications for biodiversity data?
At Biodiversity Data Journal (BDJ), authors can now incorporate nanopublications within their manuscripts to future-proofthe most important assertions on biological taxa and organisms or statements about associations of taxa or organisms and their environments.
On top of being shared and archived by means of a traditional research publication in an open-access peer-reviewed journal, scientific statements using the nanopublication format will also remain âat the fingertipsâ of automated tools that may be the next to come looking for this information, while mining the Web.
Using the nanopublication workflows and templates available at BDJ, biodiversity researchers can share assertions, such as:
So far, the available biodiversity nanopublication templates cover a range of associations, including those between taxa and individual organisms, as well as between those and their environments and nucleotide sequences.
As a result, those easy-to-digest âpixels of knowledgeâ can capture and disseminate information about single observations, as well as higher taxonomic ranks.
The novel domain-specific publication format was launched as part of thecollaboration betweenKnowledge Pixels – an innovative startup tech company aiming to revolutionise scientific publishing and knowledge sharing and the open-access scholarly publisherPensoft.
⊠so, what exactly is a nanopublication?
General structure of a nanopublication:
âthe smallest unit of publishable informationâ,
Basically, a nanopublication – unlike a research article – is a tiny snippet of a precise and structured scientific finding (e.g. medication X treats disease Y), which exists as a reusable and cite-able pieces of a growing knowledge graph stored on a decentralised server network in a format that it is readable for humans, but also âunderstandableâ and actionable for computers and their algorithms.
These semantic statements expressed in community-agreed terms, openly available through links to controlled vocabularies, ontologies and standards, are not only freely accessible to everyone in both human-readable and machine-actionable formats, but also easy-to-digest for computer algorithms and AI-powered assistants.
In short, nanopublications allow us to browse and aggregate such findings as part of a complex scientific knowledge graph. Therefore, nanopublications bring us one step closer to the next revolution in scientific publishing, which started with the emergence and increasing adoption of knowledge graphs.
âAs pioneers in the semantic open access scientific publishing field for over a decade now, we at Pensoft are deeply engaged with making research work actually available at anyoneâs fingertips. What once started as breaking down paywalls to research articles and adding the right hyperlinks in the right places, is time to be built upon,â
By letting computer algorithms access published research findings in a structured format, nanopublications allow for the knowledge snippets that they are intended to communicate to be fully understandable and actionable. With nanopublications, each of those fragmentsof scientific information is interconnected and traceable back to its author(s) and scientific evidence.
By building on shared knowledge representation models, these data become Interoperable (as in the Iin FAIR), so that they can be delivered to the right user, at the right time, in the right place , ready to be reused (as per the R in FAIR) in new contexts.
Another issue nanopublications are designed to address is research scrutiny. Today, scientific publications are produced at an unprecedented rate that is unlikely to cease in the years to come, as scholarship embraces the dissemination of early research outputs, including preprints, accepted manuscripts and non-conventional papers.
A network of interlinked nanopublications could also provide a valuable forum for scientists to test, compare, complement and build on each otherâs results and approaches to a common scientific problem, while retaining the record of their cooperation each step along the way.
***
We encourage you to try the nanopublications workflow yourself when submitting your next biodiversity paper to Biodiversity Data Journal.
Community feedback on this pilot project and suggestions for additional biodiversity-related nanopublication templates are very welcome!
On the journal website: https://bdj.pensoft.net/, you can find more about the unique features and workflows provided by the Biodiversity Data Journal (BDJ), including innovative research paper formats (e.g. Data Paper, OMICS Data Paper, Software Description, R Package, Species Conservation Profiles, Alien Species Profile), expert-provided data audit for each data paper submission, automated data export and more.
Donât forget to also sign up for the BDJ newsletter via the Email alert form on the journalâs homepage and follow it on Twitter and Facebook.
***
Earlier this year, Knowledge Pixels and Pensoft presented several routes for readers and researchers to contribute to research outputs – either produced by themselves or by others – through nanopublications generated through and visualised in Pensoftâs cross-disciplinary Research Ideas and Outcomes (RIO) journal, which uses the same nanopublication workflows.
A new study highlights potential causes for changing foraging habits of bumblebees. Using advanced molecular techniques called pollen metabarcoding, researchers investigated interactions between bumblebees and plants in Cuxhaven, Germany, and how they changed over 60 years. Their findings can help us understand the connections between availability of floral resources and changing landscapes.
The study, led by the Botany Department of the University of Kassel (Germany) in collaboration with the Leibniz Institute for the Analysis of Biodiversity Change (Germany), used bumblebee specimens from historical museum collections dating back to 1968/69 and compared them with bumblebees collected in the field in 2019. By analyzing pollen samples attached to the bodies of the bees, the researchers were able to identify the plant species they had interacted with.
The results revealed significant shifts in the foraging habits of bumblebees between the late 1960s and more recent sampling periods. In particular, there was a noticeable decrease in interactions with Fabaceae plants in 2019 compared to the past. âThis suggests that changes in the landscape have led to alterations in the availability of floral resources, which may contribute to the decline of specialized bee species,â the researchers explain.
âThe successful application of scalable molecular techniques to analyze historical pollen samples highlights the value of museum collections as a valuable resource for biodiversity research,â they add. âThis study, published in the journal Metabarcoding and Metagenomics, serves as a proof of concept for comparative analysis of recent and historical pollination data, providing important insights into the changes in foraging trends of bumblebees over time.â
âIn conclusion, this study contributes to our understanding of bumblebee interactions with foraging resources and the impact of landscape changes on their foraging habits,â say the researchers. Their findings underscore the importance of conserving and restoring suitable habitats for pollinators.
âFuture research in this field is expected to provide valuable insights for the conservation and management of pollinators and their critical role in maintaining ecosystems,â they conclude.
Original source:
Kolter A, Husemann M, Podsiadlowski L, Gemeinholzer B (2023) Pollen metabarcoding of museum specimens and recently collected bumblebees (Bombus) indicates foraging shifts. Metabarcoding and Metagenomics 7: e86883.https://doi.org/10.3897/mbmg.7.86883
Images by Andreas Kolter
Follow Metabarcoding and Metagenomics on social media:
Readers at some of the journals published by Pensoft, who have downloaded/printed a publication or ordered a physical copy of a journal issue over the last few weeks, might be in for a surprise concerning the layout of the PDF format of the articles.
Even though itâs been years since online publishing has become the norm in how we are consuming information – including scientific publications – we understand that academia is still very much fond of traditional, often paper-based, article layout format: the one you use when accessing a PDF file or a print copy, rather than directly scrolling down through the HTML version of the article.
Even if today large orders of printed volumes from overseas are the exception, rather than the rule, we know we have readers of ours who regularly print manuscripts at home or savĐ” them on their devices. Trends like this have already led to many journals first abandoning the physical- for digital-first, then transitioning to digital-only publication format.
As we speak, readers are accessing PDF files from much higher-quality desktops, in order to skim through as much content as possible.
In the meantime, authors are relying on greater-quality cameras to document their discoveries, while using advanced computational tools capable of generating and analysing extra layers of precise data. While producing more exhaustive research, however, it is also of key importance that their manuscripts are processed and published as rapidly as possible.
So, letâs run through the updates and give you our reasoning for their added value to readers and authors.
Revised opening page
One of the major changes is the one to the format of the first page. By leaving some blank space on the left, we found a dedicated place for important article metadata, i.e. academic editor, date of manuscript submission / acceptance / publication, citation details and licence. As a result, we âcleaned upâ the upper part of the page, so that it can better highlight the authors and their affiliations.
Bottom line: The new layout provides a better structure to the opening page to let readers find key article metadata at a glance.
Expand as much – or as little – as comfortable
As you might know, journals published by Pensoft have been coming in different formats and sizes. Now, we have introduced the standard A4 page size, where the text is laid in a single column that has been slightly indented to the right, as seen above. Whenever a figure or a table is used in a manuscript, however, it is expanded onto the whole width of the page.
Before giving our reasons why, letâs see what were the specific problems that we address.
Case study 1
Some of our signature journals, including ZooKeys, PhytoKeys and MycoKeys, have become quite recognisable with their smaller-than-average B5 format, widely appreciated by people who would often be seen carrying around a copy during a conference or an international flight.
However, in recent times, authors began to embrace good practices in research like open sharing of data and code, which resulted in larger and more complex tables. Similarly, their pocket-sized cameras would capture much higher-resolution photos capable of revealing otherwise minute morphological characters. Smaller page size would also mean that often there would be pages between an in-text reference of a figure or a table and the visual itself.
So, here we faced an obvious question: shall we deprive their readers from all those detailed insights into the published studies?
Yet, the A4 format brought up another issue: the lines were too long for the eye comfort of their readers.
What they did was organise their pages into two-column format. While this sounds like a good and quite obvious decision, the format – best known from print newspapers – is pretty inconvenient when accessed digitally. Since the readers would like to zoom in on the PDF page or simply access the article on mobile, they will need to scroll up and down several times per page.
In addition, the production of a two-column text is technologically more challenging, which results in extra production time.
Bottom line: The new layout allows journals to not sacrifice image quality for text readability and vice versa. As a bonus, authors enjoy faster publication for their papers.
Simplified font
If you have a closer look at the PDF file, you would notice that print-ready papers have also switched to a more simplistic – yet easier to the eye – font. Again, the update corresponds to todayâs digital-native user behaviour, where readers often access PDF files from devices of various resolutions and skim through the text, as opposed to studying its content in detail.
In fact, the change is hardly new, since the same font has long been utilised for the webpages (HTML format) of the publications across all journals.
Bottom line: The slightly rounder and simplified font prompts readability, thereby allowing for faster and increased consumption of content.
Whatâs the catch? How about characters and APCs?
While we have been receiving a lot of positive feedback from editors, authors and readers, there has been a concern that the updates would increase the publication charges, wherever these are estimated based on page numbers.
Having calculated the lines and characters in the new layout format, we would like to assure you that there is no increase in the numbers of characters or words between the former and current layout formats. In fact, due to the additional number of lines fitting in an A4 page as opposed to B5, authors might be even up for a deal.
________
* At the time of the writing, the new paper layout has not been rolled out at all journals published by Pensoft. However, most of the editorial boards have already confirmed they would like to incorporate the update.
________
For news from & about Pensoft and our journal portfolio, follow us on Twitter, Facebook and Linkedin.
For the first time, researchers developed a metabarcoding technology for brittle stars.
Japanese scientists, led by Dr Masanori Okanishi of the Hiroshima Shudo University and the University of Tokyo, analyzed environmental DNA (eDNA) released from marine invertebrates in the water, and successfully identified the species they were looking for. The study is published in the open-access journal Metabarcoding and Metagenomics.
Metabarcoding allows researchers to easily and quickly identify species and determine their number in a given location on the basis of environmental DNA (that is DNA released into, for example, the water in a particular lake).
In Japan, this method has been used successfully to detect the number of species in specific locations in the sea by sampling as little as a bucket of water. Monitoring species is part of the effort for conservation of biological resources and maintenance of their economic value, and metabarcoding can be utilized as a less labor-intensive and more cost-effective tool for marine surveys of biodiversity.
The new study reports on the research teamâs development of the first DNA primers for metabarcoding of brittle stars.
Brittle stars are the most abundant species in the phylum Echinodermata (approximately 2,100 species), making them promising indicator organisms for environmental DNA metabarcoding. These marine invertebrates are thought to release abundant environmental DNA due to their size, large populations, and habitats in a variety of seafloor environments.
To determine the origin of DNA sequences obtained from samples and used for metabarcoding, Okanishiâs team constructed a database of reference DNA sequences based on specimens identified to 60 brittle star species from Sagami Bay.
Up until now, metabarcoding had not been used for organisms with little mobility such as brittle stars, because many reference DNA sequences had been misidentified or unidentified. The new database will aid further research and application of the technology.
Original source: Okanishi M, Kohtsuka H, Wu Q, Shinji J, Shibata N, Tamada T, Nakano T, Minamoto T (2023) Development of two new sets of PCR primers for eDNA metabarcoding of brittle stars (Echinodermata, Ophiuroidea). Metabarcoding and Metagenomics 7: e94298. https://doi.org/10.3897/mbmg.7.94298
Expert Contact: Masanori Okanishi: Hiroshima Shudo University Assistant Professor. E-mail: okahoku@gmail.com
Follow Metabarcoding & Metagenomics on Facebook and Twitter.
OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System.Â
Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.
OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System.Â
As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.
In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plaziâs specialised extraction workflow – into Linked Open Data.
âThe basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,â
he adds.
At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.
Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL.
As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers âhiddenâ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions.
Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.
Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.
On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.
âOpenBiodiv is an ambitious project of ours, and itâs surely one close to Pensoftâs heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,â