Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described by a Maldivian researcher.
Named after the country’s national flower, the species is added to the tree of life as part of the California Academy of Sciences’ global Hope for Reefs initiative
Though there are hundreds of species of fish found off the coast of the Maldives, a mesmerizing new addition is the first-ever to be formally described—the scientific process an organism goes through to be recognized as a new species—by a Maldivian researcher.
The new-to-science Rose-Veiled Fairy Wrasse (Cirrhilabrus finifenmaa), described in the journal ZooKeys, is also one of the first species to have its name derived from the local Dhivehi language, ‘finifenmaa’ meaning ‘rose’, a nod to both its pink hues and the island nation’s national flower.
First collected by researchers in the 1990s, C. finifenmaa was originally thought to be the adult version of a different species, Cirrhilabrus rubrisquamis, which had been described based on a single juvenile specimen from the Chagos Archipelago, an island chain 1,000 kilometers (621 miles) south of the Maldives.
In this new study, however, the researchers took a more detailed look at both adults and juveniles of the multicolored marvel, measuring and counting various features, such as the color of adult males, the height of each spine supporting the fin on the fish’s back and the number of scales found on various body regions. These data, along with genetic analyses, were then compared to the C. rubrisquamis specimen to confirm that C. finifenmaa is indeed a unique species.
Importantly, this revelation greatly reduces the known range of each wrasse, a crucial consideration when setting conservation priorities.
Despite only just being described, the researchers say that the Rose-Veiled Fairy Wrasse is already being exploited through the aquarium hobbyist trade.
“Though the species is quite abundant and therefore not currently at a high risk of overexploitation, it’s still unsettling when a fish is already being commercialized before it even has a scientific name. It speaks to how much biodiversity there is still left to be described from coral reef ecosystems,”
says senior author and Academy Curator of Ichthyology Luiz Rocha, PhD, who co-directs the Hope for Reefs initiative.
Last month, Hope for Reefs researchers continued their collaboration with the MMRI by conducting the first surveys of the Maldives’ ‘twilight zone’ reefs—the virtually unexplored coral ecosystems found between 50- to 150-meters (160- to 500-feet) beneath the ocean’s surface—where they found new records of C. finifenmaa along with at least eight potentially new-to-science species yet to be described.
For the researchers, this kind of international partnership is pivotal to best understand and ensure a regenerative future for the Maldives’ coral reefs.
“Nobody knows these waters better than the Maldivian people. Our research is stronger when it’s done in collaboration with local researchers and divers. I’m excited to continue our relationship with MMRI and the Ministry of Fisheries to learn about and protect the island nation’s reefs together,”
says Rocha says
“Collaborating with organizations such as the Academy helps us build our local capacity to expand knowledge in this field. This is just the start and we are already working together on future projects. Our partnership will help us better understand the unexplored depths of our marine ecosystems and their inhabitants. The more we understand and the more compelling scientific evidence we can gather, the better we can protect them,”
adds Najeeb.
***
Research article:
Tea Y-K, Najeeb A, Rowlett J, Rocha LA (2022) Cirrhilabrus finifenmaa (Teleostei, Labridae), a new species of fairy wrasse from the Maldives, with comments on the taxonomic identity of C. rubrisquamis and C. wakanda. ZooKeys 1088: 65-80. https://doi.org/10.3897/zookeys.1088.78139
The Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for new-to-science species. The funds raised are to aid their conservation.
In 2018, Rainforest Trust celebrated its 30th anniversary by hosting an auction offering naming rights for some new-to-science species. The funds raised at the auction benefited the conservation of the newly recognized species. It is estimated that about 100 new species are discovered each year.
The scientific article officially describing and naming the new species, Pristimantis gretathunbergae, was published in Pensoft’s scientific journal ZooKeys.
The international team that discovered the new rainfrog was led by Abel Batista, Ph.D. (Panama) and Konrad Mebert, Ph.D. (Switzerland). The two have collaborated for 10 years in Panama and have published eight scientific articles together and described 12 new species.
The team found the frog on Mount Chucanti, a sky island surrounded by lowland tropical rainforest in eastern Panama. Reaching its habitat in the cloud forest required access via horseback through muddy trails, hiking up steep slopes, by-passing two helicopters that crashed decades ago, and camping above 1000 m elevation. The Chucanti reserve was established by the Panamanian conservation organization ADOPTA with support from Rainforest Trust.
Moments from the expedition. Photos by Konrad Mebert and Abel Batista
The Greta Thunberg Rainfrog exhibits distinctive black eyes—unique for Central American rainfrogs. Its closest relatives inhabit northwestern Colombia. Unfortunately, the frog’s remaining habitat is severely fragmented and highly threatened by rapid deforestation for plantations and cattle pasture. The Chucanti Reserve where the frog was first found is part of a growing network of natural parks and preserves championed by the Panamanian Government.
Greta Thunberg’s rainfrog, Pristimantis gretathunbergae. Photo by Konrad Mebert
The Rainforest Trust auction winner wanted to name the frog in honor of Greta Thunberg and her work in highlighting the urgency in preventing climate change. Her “School Strike for Climate” outside the Swedish parliament has inspired students worldwide to carry out similar strikes called Fridays for Future. She has impressed global leaders and her work is drawing others to action for the climate.
Greta Thunberg’s rainfrog, Pristimantis gretathunbergae. Photos by Konrad Mebert and Abel Batista
The plight of the Greta Thunberg Rainfrog is closely linked to climate warming, as rising temperatures would destroy its small mountain habitat. The Mount Chucanti region already has lost more than 30% of its forest cover over the past 10 years. Deadly chytrid fungus pose additional threats for its amphibians. Conservation of the remaining habitat is critical to ensure the survival of the frog. The important work in Panama by ADOPTA and Rainforest Trust globally to protect rainforests is critical to the survival of this frog and many other endangered species.
Research article:
Mebert K, González-Pinzón M, Miranda M, Griffith E, Vesely M, Schmid PL, Batista A (2022) A new rainfrog of the genus Pristimantis (Anura, Brachycephaloidea) from central and eastern Panama. ZooKeys 1081: 1–34. https://doi.org/10.3897/zookeys.1081.63009
A new genus of tarantula was discovered inside a bamboo culm from Mae Tho, Tak province, in Thailand. This is the first genus of tarantula that shows the surprising specialization of living in bamboo stalks. The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a wildlife YouTuber from Thailand, who collaborated with arachnologists Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote. The new genus and species are described in the journal ZooKeys.
Bamboo is important to some animals as it can serve as a source of nutrition, shelter, and habitat. Inside a bamboo culm, we discovered a new genus of tarantula, which was collected from Mae Tho, Mueang Tak district, Tak province, in Thailand.
Mae Tho, Mueang Tak district, Tak province, in Thailand, where the newly described tarantula was discovered. Photo by Narin Chomphuphuang
The discovered genus has not been previously studied by scientists; this is the first case of a genus of tarantula that shows the surprising specialization of living in bamboo stalks.
The newly described tarantula Taksinus bambus seen in the bamboo stalk. Photo by JoCho Sippawat
We named the new tarantula genus Taksinus in honor of the Thai king Taksin the Great. The name was chosen in recognition of Taksin the Great’s old name, Phraya Tak – governor of Tak province, which is where the new genus was discovered. After the Second Fall of Ayutthaya in 1767, Taksin the Great was the only king of the Thonburi Kingdom to become a key leader of Siam, prior to the establishment of Thailand.
The bamboo culm tarantula Taksinus bambus was found in Thailand by JoCho Sippawat, a nationally known wildlife YouTuber in Thailand with 2.45 million subscribers, who collaborated with Dr. Narin Chomphuphuang and Mr. Chaowalit Songsangchote, the arachnologists who studied and described the new genus.
Zongtum Sippawat, or JoCho Sippawat (left), with Wuttikrai Khaikaew, Kaweesak Keeratikiat, Narin Chomphuphuang and Chaowalit Songsangchote. Photo by Narin Chomphuphuang
In general, tarantulas from Southeast Asia can be either terrestrial or arboreal. Arboreal tarantulas spend time on different types of trees, but until now, researchers had not previously identified a tarantula found only on a specific tree type.
“These animals are truly remarkable; they are the first known tarantulas ever with a bamboo-based ecology,” Narin said.
Finding the new tarantula. Video by JoCho Sippawat
The tarantulas were discovered inside mature culms of Asian bamboo stalks (Gigantochloa sp.), with nest entrances ranging in size from 2–3 cm to a large fissure, within a silk-lined tubular burrow, either in the branch stub or in the middle of the bamboo culms. All the tarantulas found living in the culms had built silken retreat tubes that covered the stem cavity.
The tarantulas cannot bore into bamboo stems; therefore, they depend on the assistance of other animals. Bamboo is preyed upon by a variety of animals, including the bamboo borer beetle, bamboo worm, bamboo-nesting carpenter bee, and small mammals such as rodents. Furthermore, bamboo cracking is primarily caused by rapid changes in moisture content induced by the atmosphere, uneven drying, or drenching followed by rapid drying or by human activities.
Taksinus bambus tarantula in its habitat. Photo by JoCho Sippawat
Taksinus is classified as a new genus within the Ornithoctoninae subfamily of Southeast Asian tarantulas. The discovery comes 104 years after Chamberlin defined the previous genus in this subfamily, Melognathus, in 1917.
What makes Taksinus distinct from all other Asian arboreal genera is the relatively short embolus of the male pedipalps, which is used to transport sperm to the female seminal receptacles during mating. In addition to morphology, its habitat type and distribution are also different from those of related species. While Asian arboreal tarantulas have been reported in Indonesia (Sangihe Island and Sulawesi), Malaysia, Singapore, Sumatra, and Borneo, Taksinus was discovered in northern Thailand, which is a new geographical location for those spiders.
Looking at an entrance hole of a bamboo culm tarantula. Photo by Narin Chomphuphuang
“We examined all of the trees in the area where the species was discovered. This species is unique because it is associated with bamboo, and we have never observed this tarantula species in any other plant. Bamboo is important to this tarantula, not only in terms of lifestyle but also because it can only be found in high hill forests in the northern part of Thailand, at an elevation of about 1,000 m. It is not an exaggeration to say that they are now Thailand’s rarest tarantulas,” says Narin.
The tarantula Taksinus bambus in its habitat. Photo by JoCho Sippawat
Few people realize how much of Thailand’s wildlife remains undocumented. Thai forests now cover only 31.64% of the country’s total land area. We are primarily on a mission to research and save the biodiversity and wildlife within these forests from extinction, especially species-specific microhabitats.
Research article:
Songsangchote C, Sippawat Z, Khaikaew W, Chomphuphuang N (2022) A new genus of bamboo culm tarantula from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1080: 1-19. https://doi.org/10.3897/zookeys.1080.76876
While 2021 may have been a stressful and, frankly, strange year, in the world of biodiversity there has been plenty to celebrate! Out of the many new species we published in our journals this year, we’ve curated a selection of the 10 most spectacular discoveries. The world hides amazing creatures just waiting to be found – and we’re making this happen, one new species at a time.
Read Part 1 of the Top 10 new species of 2021 here.
5. The Instagram model
Many students and young researchers are encouraged to explore biodiversity by starting from their own backyard. Yes, but how often do they find undescribed snake species in there?
This is exactly what happened to Virendar K. Bhardwaj, a master student in Guru Nanak Dev University in Amritsar. Confined to his home in Chamba, India because of the COVID-19 lockdown, he started photographing any wildlife he came across and uploading it on his Instagram account. One of his images showed a beautiful kukri snake.
“It is quite interesting to see how an image on Instagram led to the discovery of such a pretty snake that, until very recently, remained hidden to the world,” Zeeshan A. Mirza told us earlier this month.
“What’s even more interesting is that the exploration of your own backyard may yield still undocumented species. Lately, people have been eager to travel to remote biodiversity hotspots to find new or rare species, but if one looks in their own backyard, they may end up finding a new species right there.”
Do freshwater snails make good tennis players? Well, one of them certainly has the name for it.
Enter Travunijana djokovici, a new species of aquatic snail named after famous Serbian tennis player Novak Djokovic.
Found in a karstic spring near Podgorica, the capital of Montenegro, T. Djokovici is part of the family of mud snails, which inhabit fresh or brackish water, including caves and subterranean habitats.
The tiny snail was discovered by Slovak biospeleologist Jozef Grego and Montenegrin zoologist Vladimir Pešić of the University of Montenegro, who claim they named it after the renowned tennis player “to acknowledge his inspiring enthusiasm and energy.”.
To discover some of the world’s rarest animals that inhabit the unique underground habitats of the Dinaric karst, to reach inaccessible cave and spring habitats and for the restless work during processing of the collected material, you need Novak’s energy and enthusiasm,” they add.
Amazingly, Novak Djokovic found out that he’s now a namesake to a tiny snail, and he even had a comment.
“I am honoured that a new species of snail was named after me because I am a big fan of nature and ecosystems and I appreciate all kinds of animals and plants,” he says in an Eurosport article. “I don’t know how symbolic this is, because throughout my career I always tried to be fast and then a snail was named after me,” he joked. “Maybe it’s a message for me, telling me to slow down a bit!”
The COVID-19 pandemic has undoubtedly affected all of us, and the scientific world is no exception. Fieldwork got postponed, museums remained closed, arranging meet-ups and travel became almost impossible.
Scientists used this as a drive and inspiration as they continued their hard work on new discoveries. Only this year, we published the descriptions of the beetle Trigonopterus corona, the wasp Allorhogas quarentenus, and, yes, the caddisfly Potamophylax coronavirus.
P. coronavirus was collected near a stream in the Bjeshkët e Nemuna National Park in Kosovo by a team of scientists led by Professor Halil Ibrahimi of the University of Prishtina. After molecular and morphological analyses, it was described as a caddisfly species new to science. Its namewill be an eternal memory of an extremely difficult period.
Potamophylax coronavirus – a new species of caddisfly, discovered in #Kosovo, has been named after the deadly virus. Scientists say this will help raise awareness about #Covid19. @alysonle tells you more pic.twitter.com/DdkgH1KUs0
In a broader sense, the researchers also wish to bring attention to “another silent pandemic occurring on freshwater organisms in Kosovo’s rivers,” caused by the pollution and degradation of freshwater habitats, as well as the activity increasing in recent years of mismanaged hydropower plants. Particularly, the river basin of the Lumbardhi i Deçanit River, where the new species was discovered, has turned into a ‘battlefield’ for scientists and civil society on one side and the management of the hydropower plant operating on this river on the other.
P. coronavirus is part of the small insect order of Trichoptera, which is very sensitive to water pollution and habitat deterioration. The authors of the species argue that it is a small-scale endemic taxon, very sensitive to the ongoing activities in Lumbardhi i Deçanit river, and failure to understand this may drive it, along with many other species, towards extinction.
If you think spiders can’t be cute, you’ve probably never seen a peacock spider. They have big forward-facing eyes, and their males perform fun courtship dances.
Citizen scientist Sheryl Holliday was the first to spot this vibrant spider while walking in Mount Gambier, Australia, and she posted her find on Facebook.It was later described as a new species by arachnologist Joseph Schubert of Museums Victoria.
Coloured bright orange, it was called Maratus Nemo, after the popular Disney character.
‘It has a really vibrant orange face with white stripes on it, which kind of looks like a clown fish, so I thought Nemo would be a really suitable name for it,’ Joseph Schubert says.
Maratus Nemo is probably the first influencer arachnid – his curious story, bright colours and fun name practically made him an internet star overnight.
1. The tiny ant that challenges gender stereotypes
Found in Ecuador’s evergreen tropical forests, this miniature trap jaw ant bears the curious Latin name Strumigenys ayersthey. Unlike most species named in honour of people, whose names end with -ae (after females) and –i (after males), S. ayersthey might be the only species in the world to have a scientific name with the suffix –they.
“In contrast to the traditional naming practices that identify individuals as one of two distinct genders, we have chosen a non-Latinized portmanteau honoring the artist Jeremy Ayers and representing people that do not identify with conventional binary gender assignments, Strumigenys ayersthey,” authors Philipp Hoenle of the Technical University of Darmstadt and Douglas Booher of Yale University state in their paper.
“Strumigenys ayersthey sp. nov. is thus inclusively named in honor of Jeremy Ayers for the multitude of humans among the spectrum of gender who have been unrepresented under traditional naming practices.”
Curiously, it was no other than lead singer and lyricist of the American alternative rock band R.E.M. Michael Stipe that joined Booher in writing the etymology section for the research article, where they explain the origin of the species name and honor their mutual friend, activist and artist Jeremy Ayers.
This ant can be distinguished by its predominantly smooth and shining cuticle surface and long trap-jaw mandibles, which make it unique among nearly a thousand species of its genus.
“Such a beautiful and rare animal was just the species to celebrate both biological and human diversity,” Douglas Booher said.
Genetic assessment of captive gibbons to identify their species and subspecies is an important step before any conservation actions. A group of wildlife researchers recently discovered a previously unknown population of white-handed gibbons (subspecies lar) from Peninsular Malaysia. Their findings are now published in the open-access journal ZooKeys. Betsy and Lola are among the captive white-handed gibbons undergoing a strict rehabilitation process before being released back to the wild.
Many captive gibbons kept in zoos and rescue centres have been seized from illegal pet trade, private collectors, and plantations where their natural habitats are getting destroyed.
In 2013, the National Wildlife Rescue Centre (NWRC) of the Department of Wildlife and National Parks (PERHILITAN) was established in Peninsular Malaysia to help with the rehabilitation of wildlife species – including gibbons – before they are reintroduced or translocated back to the wild. Under the Primate Rehabilitation Programme initiated by PERHILITAN, captive gibbons have to go through a number of procedures and assessments, where their taxonomy and genetics might be examined, before they can go back to living in the wild.
Members of the research team at National Wildlife Forensic Laboratory of DWNP. Photo by PERHILITAN
In a research paper published in the open-access journal ZooKeys, the team describes a previously unknown southern population of the white-handed gibbon subspecies lar living in Peninsular Malaysia. In what started as a straightforward species and subspecies identification process using DNA technology, the researchers discovered unusual mutations in the DNA of the studied gibbons. This is how the researchers found themselves before a distinct population, which they concluded must have been evolving in isolation.
Lola (left) and Betsy (right), two of the White-handed gibbons of the Hylobates lar lar subspecies undergoing rehabilitation process at Pulau Ungka, NWRC. Photo by Hani Nabilia and PERHILITAN
“Given the prolonged isolation, it is likely that the southern population has undergone some local speciation, but this finding should be regarded as preliminary and requires further investigation,” explained Dr Jeffrine. Furthermore, the researchers suggest there might be a northern population inhabiting Southern Thailand.
Still going through rehabilitation, the gibbons from the study have been pre-released into a semi-wild enclosure known as Pulau Ungka (Gibbon Island), where their recovery is closely monitored by primate experts of PERHILITAN.
Research article:
Gani M, Rovie-Ryan JJ, Sitam FT, Mohd Kulaimi, NA, Zheng, CC, Atiqah AN, Abd Rahim, NM, Mohammed AA (2021) Taxonomic and genetic assessment of captive White-Handed Gibbons (Hylobates lar) in Peninsular Malaysia with implications towards conservation translocation and reintroduction programme. ZooKeys 1076: 25–41 (2021), doi: 10.3897/zookeys.1076.73262
With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.
With 2022 round the corner, we thought we’d start off the celebrations by looking back to some the most memorable discoveries of 2021. And what a year it has been! Many new species made their debuts on the pages of Pensoft journals – here’s our selection of the most exciting animals, plants and fungi that we published in 2021.
10. The delicious wild oak mushroom
It’s amazing that edible species, long known to local communities, can still present a novelty for science. This was the case with Cantharellus veraecrucis, a chanterelle from – that’s right, Veracruz, Mexico.
During the rainy season, locals harvest this mushroom from tropical oak forests to sell it or enjoy it as a delicacy; this is probably why they’ve dubbed it “Oak mushroom”.
If you ever see a leaf insect, there’s a good chance you won’t notice it – these little critters are masters of camouflaging.
This picture was taken in 2014, when Jérôme Constant and Joachim Bresseel from the Royal Belgian Institute of Natural Sciences were enjoying a night walk in Vietnam’s Nui Chua National Park. It wasn’t until this year, though, that this beauty got its own scientific name: Cryptophyllium nuichuaense. Named after the park where it was found, it is oneof 13 new species of leaf insects described in our journal ZooKeysthis February.
This leaf insect, like many others, is endemic to Vietnam. This is why the researchers who found itcall for the creation of more protected areas in order to keep this precious biodiversity intact.
Unlike most spiders, trapdoor spiders don’t use silk to make a web. Instead, they live in burrows lined with silk that they cover with a “trapdoor”. They are relatively widely spread, but you’d rarely encounter one out in the open, because they spend most of their lives underground.
This is probably why arachnologists and spider lovers the world over got so excited when Dr. Rebecca Godwin (Piedmont University, GA) and Dr. Jason Bond (University of California, Davis, CA) described 33 new species of trapdoor spiders from the genus Ummidia – in addition to the 27 already known.
Dr. Rebecca Godwin talks to L. Brian Patrick about her discovery of 33 new species of trapdoor spiders on his podcast New Species.
One of the 33 is Ummidia neilgaimani, named after fantasy and horror writer Neil Gaiman. A particular favorite of Dr. Godwin, Gaiman is the author of a number of books with spider-based characters. His novel American Gods features a character based on the West African spider god Anansi and a World Tree “one hour south of Blacksburg,” not far from the type locality of this species. He’s also part of the documentary Sixteen Legs, in his own words “An amazing film about Tasmanian cave spider sex.”
“I think anything we can do to increase people’s interest in the diversity around them is worthwhile and giving species names that people recognize but that still have relevant meaning is one way to do that,” says Dr. Godwin.
Bungarus suzhenaewas only described as a new species this year, but its reputation preceded it – in a bad way. Researchers were already familiar with a notorious black-and-white banded krait that bit herpetologists on expeditions in Myanmar and China – in one infamous case, to death. After extensive morphological and phylogenetical analysis, the researchers were finally able to confirm it as new to science.
The story behind B. suzhenae’s name is interesting, too: it was named after a character from the traditional Chinese myth ‘Legend of White Snake’. The powerful snake goddess Bai Su Zhen is to this day regarded as a symbol of true love and good-heartedness in China.
Snakebites from kraits – including this one – are known to have a high mortality. This is why the new knowledge on B. suzhenae and its description as a new species are essential to the research on its venom and an important step in the development of antivenom and improved snakebite treatment.
Commonly known as “fairy lanterns”, plants of the genus Thismia are very rare and small in size. They are mycoheterotrophic, which means they live in close association with fungi from which they acquire most of their nutrition. They’re also very elusive, growing in dark, remote rainforests, and visible only when they emerge to flower and set seed after heavy rain.
In fact, researchers were only able to find one specimen of the new T. sitimeriamiae, which they discovered in the Terengganu State of Malaysia – the rest of the population had been destroyed by wild boars.
Just discovered, T. sitimeriamiae may already be threatened by extinction – which is why the research team that discovered it suggest that this exceptionally rare plant is classified as Critically Endangered.
… and 27 other new species of beetles discovered on Sulawesi Island
Many curious animals can be found on the Indonesian Island of Sulawesi – such as the deer-hog and the midget buffalo. But the island’s tropical forests hide a diversity of tiny insects that still remains largely unexplored. Museum scientists from Indonesia and Germany have just discovered 28 new species of beetles, all belonging to the weevil genus Trigonopterus.
Twenty-four newly discovered species of the genus Trigonopterus from Sulawesi. Image by Alexander Riedel
Most of the new species were collected by Raden Pramesa Narakusumo, curator of beetles at the Museum Zoologicum Bogoriense, from two localities of Central Sulawesi Province: Mt. Dako and Mt. Pompangeo. In fact, the forests on their slopes had never been searched for small weevils before.
A view from a ridge over the cloudy slopes of Mt. Pompangeo. Photo by Raden Pramesa Narakusumo
His research partner, Alexander Riedel of the Natural History Museum Karlsruhe, had been studying this genus for the past 15 years and was planning for a research trip to Papua New Guinea, when the COVID-19 pandemic hit. Finding himself grounded, he decided to work on the specimens from Sulawesi together with Narakusumo instead.
After diagnosing the new species, it was a challenge to find suitable names for them. One obvious choice was Trigonopterus corona, which reflects the large impact of the COVID-19 pandemic on this project. However, T. corona is by far not the first insect species with a pandemic-inspired name. In the last year, we’ve seen the species descriptions of the caddisfly Potamophylax coronavirus and the wasps Stethantyx covida and Allorhogas quarentenus.
Trigonopterus corona.
Trigonopterus ewok.
While some of the newly described species go by rather ‘standard’ names that derive from either the localities they have been collected from or their distinct characters, others were given a free pass to the Hall of Fame. Two of them were named after Indonesian movie characters (T. gundala and T. unyil), while T. ewok is another addition based on the Star Wars universe – perfectly in line with T. chewbacca, T. yoda and T.porg, all described between 2016 and 2019 by teams involving Riedel. The two-millimeter-long, rust-coloured Trigonopterus ewok was found at 1900–2000 m on Mt Pompangeo, hiding among the leaf litter in the forest.
But how come the critters have remained overlooked for so long? Almost all of these beetles measure only 2-3 millimeters, while most entomologists have a preference for the larger and strikingly looking stag beetles or jewel beetles.
A second factor is the superficial resemblance of many species: they are most easily diagnosed by their DNA sequences. Besides the publication in the open-access journal ZooKeys, high-resolution photographs of each species were uploaded to theSpecies ID website, along with a short scientific description. This provides a face to the species name, an important prerequisite for future studies.
R.P. Narakusumo during fieldwork at the top of Mt. Dako. Photo by Raden Pramesa Narakusumo
This is the duo’s second published paper on Trigonopterus weevils from Sulawesi – the first one describing the whopping 103 new species from the area. Currently, the known Trigonopterus species on the island amount to 132, which is likely a mere fraction of the real diversity. The numerous mountains of Sulawesi have a distinct fauna of endemics that have evolved over the past millions of years, and these wingless, flightless weevils, highly isolated in their habitats, are a good example of this diversification. Their evolution is interwoven with the island´s geological history. Riedel wants to increase the number of sampled localities:
“Once we have enough locality coverage and understand the weevils’ evolution, we can draw conclusions on the geological processes that formed the island of Sulawesi. This is a fascinating subject, because this island was formed by the fusion of different fragments millions of years ago.” The new species thus fill an important gap required for solving the island´s geological puzzle.
For the Indonesian side, it is equally important to obtain an inventory of species: “A large percentage of Indonesian biodiversity is yet unknown and we need names and diagnoses of species, so we can use these in further studies on conservation and bioprospecting,” says R. Pramesa Narakusumo. “Two of the newly described species came from our museum collection, and this underlines the importance of museums as a source for biological discoveries,” he added.
With many more new species of this genus to be expected, it is a lucky coincidence that the number of Star Wars characters is equally long. May the Force be with these researchers!
Research article:
Narakusumo RP, Riedel A (2021) Twenty-eight new species of Trigonopterus Fauvel (Coleoptera, Curculionidae) from Central Sulawesi. ZooKeys 1065: 29-79.https://doi.org/10.3897/zookeys.1065.71680
In Pakistan, amphibians have long been neglected in wildlife conservation, management decisions and research agendas. To counter this, scientists have now published the first comprehensive study on all known amphibian species in the country in the open-access scholarly journal ZooKeys. The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.
Amphibians are bioindicators of an ecosystem’s health and may also serve as biological control of crop and forest pests. The First Herpetological Congress, organized in 1989, presented alarming findings about the decline in amphibian populations. Currently, amphibians include the highest percentage of threatened species (>40%), as well as the highest number of data deficient species (>1500 species). The little we currently know about the occurrence of the chytrid fungus, which has already eradicated many amphibian species globally, is a grim example of how urgent it is to acquire further information.
Asian Common Toad. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi
Researchers just published the first comprehensive study on all known amphibian species of Pakistan in the open-access journalZooKeys. In it, they report 21 species from the country, providing their identification key and photographic guide. However, as many of Pakistan’s potential amphibian habitats are difficult to access and study, especially the high-altitude northern and arid western mountains, it is highly likely that a lot of species are yet to be discovered.
Burrowing Frog (in amplexus). Photo by Herpetology Lab, Arid Agriculture University Rawalpindi
In particular, the authors point out that habitats facing destruction, urbanization, pollution, unsustainable utilization and other human-caused threats need to be put on high priority, so that suitable conservation strategies can be devised. This way, amphibian populations would be better controlled with less financial, administrative, and human resources.
So far, amphibians have been excluded from all current legislative and policy decisions in the country. Likewise, they are not protected under any law. Hence, the legislation pertaining to rare and endemic species needs to be updated. Schedule III, which includes protected species, provincial and federal wildlife laws, and CITES appendices are in particular need of revision.
Common Skittering Frog. Photo by Herpetology Lab, Arid Agriculture University Rawalpindi
Currently, wildlife conservation projects in Pakistan mainly focus on carnivores, ungulates and birds. Therefore, the authors of the study propose adopting an inclusive wildlife conservation approach in Pakistan. This approach would advocate the integration of poorly documented taxa, such as amphibians, in wildlife conservation and management projects. It is by highlighting the significance of their existence and the intrinsic values of all wildlife species that local ecosystems can remain healthy in the long run.
“There is also a dire need to change social attitudes towards the appreciation and significance of amphibians in our society. This could be achieved by initiating community awareness, outreach and school classrooms, and through citizen science programs,” add the researchers.
Research article: Rais M, Ahmed W, Sajjad A, Akram A, Saeed M, Hamid HN, Abid A (2021) Amphibian fauna of Pakistan with notes on future prospects of research and conservation. ZooKeys 1062: 157-175.https://doi.org/10.3897/zookeys.1062.66913
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper from Tibet, and the Glacier pit viper found west of the Nujiang River and Heishui, Sichuan.
Two new species of venomous snakes were just added to Asia’s fauna – the Nujiang pit viper (Gloydius lipipengi) from Zayu, Tibet, and the Glacier pit viper (G. swild) found west of the Nujiang River and Heishui, Sichuan, east of the Qinghai-Tibet Plateau. Our team of researchers from the Institute of Vertebrate Paleontology and Paleoanthropology at the Chinese Academy of Sciences and Bangor Universitypublished the discovery in the open-access journal ZooKeys. In this study, we performed a new molecular phylogenetic analysis of the Asian pit vipers.
Glacier pit viper (Gloydius swild)
The Nujiang pit viper has a greyish brown back with irregular black ring-shaped crossbands, wide, greyish-brown stripes behind the eyes, and relativity short fangs, while the Glacier pit viper is blueish-grey, with zigzag stripes on its back, and has relatively narrow stripes behind its eyes.
Nujiang pit viper (Gloydius lipipengi)
Interestingly, the Glacier pit viper was found under the Dagu Holy-glacier National Park: the glacier lake lies 2000 meters higher than the habitat of the snakes, at more than 4,880 m above sea level. This discovery suggests that the glaciers might be a key factor to the isolation and speciation of alpine pit vipers in southwest China.
The glacier lake on top of the mountain near the type locality of Glacier pit viper.
The stories behind the snakes’ scientific names are interesting too: with the new species from Tibet, Gloydius lipipengi, the name is dedicated to my Master’s supervisor, Professor Pi-Peng Li from the Institute of Herpetology at Shenyang Normal University, just in time for Li’s sixtieth birthday. Prof. Li has devoted himself to the study of the herpetological diversity of the Qinghai-Tibet Plateau, and it was under his guidance that I became an Asian pit viper enthusiast and professional herpetological researcher.
Gloydius swild, the new species from Heishui, Sichuan, is in turn named after the SWILD Group, which studies the fauna and biodiversity of southewst China. They discovered and collected the snake during an expedition to the Dagu Holy-glacier.
A misty morning near the habitat of Glacier pit viper.
We are equally impressed by the sceneries we encountered during our field work: throughout our journey, we got to look at sacred, crystal-like glacier lakes embraced by the mountains, morning mist falling over the village, and colorful broadleaf-conifer forests. During our expedition, we met a lot of hospitable Tibetan inhabitants and enjoyed their kindness and treats, which made the expedition all the more unforgettable.
Research article:
Shi J-S, Liu J-C, Giri R, Owens JB, Santra V, Kuttalam S, Selvan M, Guo K-J, Malhotra A (2021) Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87-108. https://doi.org/10.3897/zookeys.1061.70420
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
“(…) pronotum often takes on various extreme modifications, giving to the insects a most grotesque or bizarre appearance (…)”
quote from Hancock, Joseph Lane (1907) Orthoptera fam. Acridiidae, subfam Tetriginae. Genera Insectorum.
Have you ever seen a one-centimetre-long jumping critter in a leaflitter or close to a pond or a stream and thought that it is some juvenile insect? Well, I must disappoint you. What you saw was probably an adult pygmy grasshopper, member of the family Tetrigidae. There are more than 2000 described species of those minute jumping insects, and this peculiar family has been around for more than 230 million years, meaninng that pygmies said both ‘hi’ and ‘bye’ to dinosaurs. And yet, we know more about dinosaurs than we do about pygmy grasshoppers.
Most of the research you can find out there is probably based on genera Tetrix and Paratettix in Europe or Northern America (Adžić et al. 2021). Species of Northern America (Nearctic region, 35 species) and Europe (W Palearctic region, 11 species) are indeed best known from the standpoint of natural history, even though they represent only about 2% of the diversity. Here is the list of 19 species that are most often observed by amateur naturalists on the iNaturalist platform (Table 1) and as you can see 12 out of 19 species are indeed from Europe and Northern America. Because of that, let us focus on awesome neglected diversity in the tropics.
Species
Geographic distribution
N of observations
Tetrix subulata
Holarctic
618
Tettigidea lateralis
Nearctic
505
Tetrix undulata
W Palearctic
267
Tetrix tenuicornis
Palearctic
225
Criotettix bispinosus
Indochina and islands of SE Asia
225
Paratettix meridionalis
W Palearctic: Mediterranean
145
Paratettix mexicanus
Nearctic
111
Tetrix depressa
W Palearctic
90
Tetrix arenosa
Nearctic
82
Tetrix bipunctata
W Palearctic
77
Tetrix japonica
E Palearctic
73
Paratettix aztecus
S Nearctic to N Neotropics
54
Paraselina brunneri
E Australia
54
Nomotettix cristatus
Nearctic
53
Tetrix ceperoi
W Palearctic
51
Hyperyboella orphania
New Caledonia
49
Scelimena producta
Java, Sumatra, Bali
31
Eurymorphopus bolivariensis
New Caledonia
30
Discotettix belzebuth
Borneo
26
Table 1. Well-known Tetrigidae species. Pygmy grasshoppers with more than 25 Research-Grade observations in iNaturalist, together with their distribution briefly explained.
Why do I mention the iNaturalist platform? Because I think it is the future of zoology, especially of faunistics. Never before have we been able to simultaneously gather so much data from so many different places. I started using Flickr some time ago to search for photos of unidentified rare pygmy grasshoppers. I did find many rare species, and what is even crazier, species that were not known to science. I’ll try to present you with a glimpse of the diversity I found online, so maybe some new students or amateurs will contribute, as they did with Paraselina brunneri, after the study was published in ZooKeys.
The Angled Australian barkhopper, Paraselina brunneri (= P. multifora). A, B, D a female from Upper Orara, photos by Nick Lambert. C a female from Lansdowne forest, photo by Reiner Richter. E a male from Mt. Glorious, photo by Griffin Chong. F individual from Mt. Mellum, photo by Ian McMaster.
It seems that “rare” species from Australia are not so rare after all
Many new records ofParaselina brunneri and Selivinga tribulata can now be found online, thanks to a study published with ZooKeys.
The Tribulation helmed groundhopper, Selivinga tribulata, living specimens in natural habitat. A Female from Kuranda, photo by David Rentz. B male from Kuranda, photo by David Rentz. C male from Tully Range, photo by Matthew Connors. D nymph from Redlynch, photo by Matthew Connors. E, G a male from Kingfisher park, photo by Nick Monaghan. F female from Speewah, photo by Matthew Connors.
Enjoy some selected awesome places and selected amazing taxa that inhabit those places. Emphasis is given on the extremely rare and weird-looking, or as Hancock called them, bizarre and grotesque species. Those with leaf-like morphology, spines, warts, undulations, or horns. Enjoy a short voyage from the rainforests of Madagascar through the humid forests of Australia, New Guinea, Borneo, and finally the Atlantic Forest of Brazil.
Madagascar is home to some of the largest and most colourful species of Tetrigidae in whole world
Very peculiar are the species of the genera Holocerusand Notocerus, both of which were discussed in studies published in ZooKeys. Finally, one can find photographs of these beauties identified to species level.
Variability of Holocerus lucifer. A living specimen in Marojejy NP, photo by R. Becky. B–E variability of pronotal projection morphology (B holotype of Holocerus lucifer C Maroantsentra, Antongil Bay D holotype of H. taurus E Tamatave.
Interesting fact about those large pygmy grasshoppers: When I visited the rainforests of Madagascar, I observed one Holocerus devriesei and took photos of it. The insect then took flight far away in the rainforest. Who could think that an animal with such a large back spines could be such a skilful flier! The same is maybe true for Notocerus.
Holocerus devriesei in natural habitat. A Nymph from Andasibe, photo by P. Bertner. B nymph from Vohimana, photo by F. Vassen. C adult ♀ from Andasibe in c in dorsal view and D in dorsal view, photos by P. Bertner.Holocerus devriesei and its habitat. A ♂ from Ranomafana in natural habitat, photos by M. Hoffmann. B–E adult ♂ from Analamazaotra, photos by J. Skejo. F–G natural habitat in Analamazaotra G Ravenala madagascariensis, the Traveler’s Palm, photos by J. Skejo.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in lateral view. Photo by Éric Mathieu.Live female of the Formidable Pygmy Grasshopper, Notocerus formidabilis, in dorsal view. Photo by Éric Mathieu.
Not all pygmy grasshoppers are large and colourful
Some species, like the Pymgy unicorns of Southern America are small but still interesting. Metopomystrum muriciense was described with ZooKeys from the Atlantic rainforests of Murici, Brazil, in 2017.
Metopomystrum muriciense: A Male holotype, head and portion of sternum, frontal view B head and portion of pronotum, dorsal view C head and portion of pronotum, lateral view (* sternomentum). Scale bars: 2.0 mm.
Some pygmy grasshoppers are weird
Giraffehoppers from New Guinea are among the most unique pygmy grasshoppers. Many species can be differentiated by the antennal shape, and maybe by face coloration. Those are very visual animals, and antennae and colours might be used for courtship (Tumbrinck & Skejo 2017).
A field photographic record of a living Ophiotettix pulcherrima mating pair from Yapen Island, Cenderawasih Bay, W New Guinea, lateral view. Photo by D. PriceField photographic records of living Ophiotettix.
For young entomologists: How did I decide to study pygmy grasshoppers?
No true biology student knows what she or he wants to study and which direction to take. With me, it was pretty much the same thing. Systematics caught my attention during primary and high school, and I always had a tendency to systematically compare data. My first idea was to study snakes, as I was amazed by shield-tailed snakes (Uropeltidae) and blind snakes (Scolecophidia), about whom I have read a lot. Unfortunately, I never saw representatives of those snake groups, but fortunately, there were a lot of animals that I had seen, and with whom I was more familiar in the field. Among them, there were grasshoppers and crickets (order Orthoptera). Together with Fran Rebrina, my friend and fellow student, I started the first systematic research of Orthoptera of Croatia and the Balkans. Our study on two Croatian endemic species, Rhacocleis buchichii and Barbitistes kaltenbachi, was published with ZooKeys last year.
In the first years of our Orthoptera studies (2011-2012), I never saw a single pygmy grasshopper in Croatia. I remember it as if it was yesterday when Fran and I asked our senior colleague, Ivan Budinski (BIOM, Sinj), where we could find Tetrigidae, and he confidently said that they are to be found around water. Peruća lake near the city of Vrlika was he place where I saw pygmy grasshoppers, namely Tetrix depressa and Tetrix ceperoi, for the first time ever. I could not believe that there were grasshoppers whose lifecycle is water dependent in any way, so I kept researching them, contacting leading European orthopterists familiar with them (Hendrik Devriese, Axel Hochkirch, Josef Tumbrinck), and checking all the museum collections where I could enter. The encounter on the shores of Peruća was the moment that determined my career as an entomologist. After I discovered specimens of the extremely rare Tetrix transsylvanica in Croatian Natural History Museum (HPM – Hrvatski Prirodoslovni Muzej, Zagreb) in 2013 (Skejo et al. 2014), and after a serendipitous discovery of a new Arulenus species (Skejo & Caballero 2016), I just decided that maybe this interesting group was understudied and required systematic research, and here I am in 2021, regularly publishing on this very group.
References
Adžić K, Deranja M, Pavlović M, Tumbrinck J, Skejo J (2021). Endangered Pygmy Grasshoppers (Tetrigidae). Imperiled – Enyclopaedia of Conservation,. Elsevier, https://doi.org/10.1016/B978-0-12-821139-7.00046-5
Mathieu É, Pavlović M, Skejo J (2021) The true colours of the Formidable Pygmy Grasshopper (Notocerus formidabilis Günther, 1974) from the Sava region (Madagascar). ZooKeys 1042: 41-50. https://doi.org/10.3897/zookeys.1042.66381
Silva DSM, Josip Skejo, Pereira MR, De Domenico FC, Sperber CF (2017) Comments on the recent changes in taxonomy of pygmy unicorns, with description of a new species of Metopomystrum from Brazil (Insecta, Tetrigidae, Cleostratini, Miriatrini). ZooKeys 702: 1-18. https://doi.org/10.3897/zookeys.702.13981
Skejo J, Connors M, Hendriksen M, Lambert N, Chong G, McMaster I, Monaghan N, Rentz D, Richter R, Rose K, Franjević D (2020) Online social media tells a story of Anaselina, Paraselina, and Selivinga (Orthoptera, Tetrigidae), rare Australian pygmy grasshoppers. ZooKeys 948: 107-119. https://doi.org/10.3897/zookeys.948.52910
Skejo J, Medak K, Pavlović M, Kitonić D, Miko RJC, Franjević D (2020) The story of the Malagasy devils (Orthoptera, Tetrigidae): Holocerus lucifer in the north and H. devriesei sp. nov. in the south? ZooKeys 957: 1-15. https://doi.org/10.3897/zookeys.957.52565
Tumbrinck, J & Skejo, J. (2027) Taxonomic and biogeographic revision of the New Guinean genus Ophiotettix Walker, 1871 (Tetrigidae: Metrodorinae: Ophiotettigini trib. nov.), with the descriptions of 33 new species. In Telnov D, Barclay MVL, Pauwels OS (Eds) Biodiversity, biogeography and nature conservation in Wallacea and New Guinea (Volume III). The Entomological Society of Latvia, Riga, Latvia, 525-580.