With more than 7000 individuals populating the Carpathian Mountains and neighboring areas, Romania has the highest density of brown bears in Europe. As they often inhabit human-dominated landscapes, conflicts with people are not uncommon.
“The media play an influential role in how the public perceives brown bears, thus, it can promote human-wildlife coexistence or exacerbate future conflicts”, they say.
Brown bear waiting on the roadside for food scraps (National Road 2D, Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
The study found that news stories related to brown bears became common in Romanian media only after 2016, following the instatement of a provisional one-year ban on culling, and increased abruptly in 2021 following the whistleblowing of an alleged trophy hunting event.
The majority of reports were about human-bear interaction, hunting, and poaching, offering little context and information on how to avoid conflicts. Articles on the ecology and biology of brown bears were rare, which indicates less consideration of the ecological significance and the impact of human activities on their conservation status.
Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society.
The attitude towards brown bears, perceived from the studied articles was predominantly negative (53%; 380 articles). In these articles, the authors used phrases such as: “At any moment the people can find themselves in front of a hungry bear;” “Beyond the horror they live with every day, they have lost their patience and trust in the authorities;” and “People are afraid of the worst.”
Even when reporting sightings of bears near populated areas and encounters with no casualties, Romanian media promoted a negative image of bears to their readership. “Focusing on alarming messages without offering evidence or advice can increase fear and undermine efforts to protect the species and the welfare of society,” the researchers said.
Importantly, the team found that media did not consult wildlife and conservation biologists when reporting on human-bear interactions or bear hunting and poaching events. “This can be because the experts are reluctant to be part of the debate, or because the media may not be interested in bringing more scientific context to their reports,” they reason.
Rescuing a bear trapped in wire-snare in an orchard (Vrancea, Romania). Photo by Dr Silviu Chiriac (EPA Vrancea)
“In conclusion, increasing the frequency of reporting interaction events with alarming messages can only lower the level of tolerance for wildlife and negatively influence political decisions regarding the management of the brown bear population.”
The researchers call for publishing detailed and evidence-informed news as a means to educate people to avoid conflict and facilitate the implementation of effective wildlife conservation and management strategies.
“Evidence-informed news can help authorities better understand conflicts and create bottom-up pathways toward an optimistic future for brown bears and Romanian society”, they conclude.
Research article:
Neagu AC, Manolache S, Rozylowicz L (2022) The drums of war are beating louder: Media coverage of brown bears in Romania. Nature Conservation 50: 65-84. https://doi.org/10.3897/natureconservation.50.86019
The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed.
Worldwide, natural history institutions house billions of physical objects in their collections, they create and maintain data about these items, and they share their data with aggregators such as the Global Biodiversity Information Facility (GBIF), the Integrated Digitized Biocollections (iDigBio), the Atlas of Living Australia (ALA), Genbank and the European Nucleotide Archive (ENA).
Even though these data often include the names of the people who collected or identified each object, such statements may be ambiguous, as the names frequently lack any globally unique, machine-readable concept of their shared identity.
Despite the data being available online, barriers exist to effectively use the information about who collects or provides the expertise to identify the collection objects. People have similar names, change their name over the course of their lifetime (e.g. through marriage), or there may be variability introduced through the label transcription process itself (e.g. local look-up lists).
As a result, researchers and collections staff often spend a lot of time deducing who is the person or people behind unknown collector strings while collating or tidying natural history data. The uncertainty about a person’s identity hampers research, hinders the discovery of expertise, and obstructs the ability to give attribution or credit for work performed.
Disambiguation activities: the act of churning strings into verifiable things using all available evidence – need not be done in isolation. In addition to presenting a workflow on how to disambiguate people in collections, we also make the case that working in collaboration with colleagues and the general public presents new opportunities and introduces new efficiencies. There is tacit knowledge everywhere.
More often than not, data about people involved in biodiversity research are scattered across different digital platforms. However, with linking information sources to each other by using person identifiers, we can better trace the connections in these networks, so that we can weave a more interoperable narrative about every actor.
That said, inconsistent naming conventions or lack of adequate accreditation often frustrate the realization of this vision. This sliver of natural history could be churned to gold with modest improvements in long-term funding for human resources, adjustments to digital infrastructure, space for the physical objects themselves alongside their associated documents, and sufficient training on how to disambiguate people’s names.
“He aha te mea nui o te ao. He tāngata, he tāngata, he tāngata.”
“What is the most important thing in the world? It is people, it is people, it is people.”
(Māori proverb)
The process of properly disambiguating those who have contributed to natural history collections takes time.
The disambiguation process involves the extra challenge of trying to deduce “who is who” for legacy data, compared to undertaking this activity for people alive today. Retrospective disambiguation can require considerable detective work, especially for scarcely known people or if the community has a different naming convention. Provided the results of this effort are well-communicated and openly shared, mercifully, it need only be done once.
At the core of our research is the question of how to solve the issue of assigning proper credit.
In our recent Methods paper, we discuss several methods for this, as well as available routes for making records available online that include not only the names of people expressed as text, but additionally twinned with their unique, resolvable identifiers.
Disambiguation is a cycle. Enrichment of the data feeds off itself leading to further disambiguation. As more names are disambiguated and more biographical data are accumulated, it becomes easier to disambiguate more names.
First and foremost, we should maintain our own public biographical data by making full use of ORCID. In addition to preserving our own scientific legacy and that of the institutions that employ us, we have a responsibility to avoid generating unnecessary disambiguation work for others.
For legacy data, where the people connected to the collections are deceased, Wikidata can be used to openly document rich bibliographic and demographic data, each statement with one or more verifiable references. Wikidata can also act as a bridge to link other sources of authority such as VIAF or ORCID identifiers. It has many tools and services to bulk import, export, and to query information, making it well-suited as a universal democratiser of information about people often walled-off in collection management systems (CMS).
A network of the top twenty most used identifiers for biologists on Wikidata.
Once unique identifiers for people are integrated in collection management systems, these may be shared with the global collections and research community using the new Darwin Core terms, recordedByID or identifiedByID along with the well-known, yet text-based terms, recordedBy or identifiedBy.
Approximately 120 datasets published through GBIF now make use of these identifier-based terms, which are additionally resolved in Bionomia every few weeks alongside co-curated attributions newly made there. This roundtrip of data – emerging as ambiguous strings of text from the source, affixed with resolvable identifiers elsewhere, absorbed into the source as new digital annotations, and then re-emerging with these fresh, identifier-based enhancements – is an exciting approach to co-manage collections data.
Round tripping. In Bionomia, people identifiers from Wikidata and ORCID are used to enrich data published via GBIF, thus linking natural history specimens to the world’s collectors.
Disambiguation work is particularly important in recognising contributors who have been historically marginalized. For example, gender bias in specimen data can be seen in the case of Wilmatte Porter Cockerell, a prolific collector of botanical, entomological and fossil specimens. Cockerell’s collections are often attributed to her husband as he was also a prolific collector and the two frequently collected together.
On some labels, her identity is further obscured as she is simply recorded as “& wife” (see example on GBIF). Since Wilmatte Cockerell was her husband’s second wife, it can take some effort to confirm if a specimen can be attributed to her and not her husband’s first wife, who was also involved in collecting specimens. By ensuring that Cockerell is disambiguated and her contributions are appropriately attributed, the impact of her work becomes more visible enabling her work to be properly and fairly credited.
Thus, disambiguation work helps to not only give credit where credit is due, thereby making data about people and their biodiversity collections more findable, but it also creates an inclusive and representative narrative of the landscape of people involved with scientific knowledge creation, identification, and preservation.
A future – once thought to be a dream – where the complete scientific output of a person is connected as Linked Open Data (LOD) is now.
Both the tools and infrastructure are at our disposal and the demand is palpable. All institutions can contribute to this movement by sharing data that include unique identifiers for the people in their collections. We recommend that institutions develop a strategy, perhaps starting with employees and curatorial staff, people of local significance, or those who have been marginalized, and to additionally capitalize on existing disambiguation activities elsewhere. This will have local utility and will make a significant, long-term impact.
The more we participate in these activities, the greater chance we will uncover positive feedback loops, which will act to lighten the workload for all involved, including our future selves!
The disambiguation of people in collections is an ongoing process, but it becomes easier with practice. We also encourage collections staff to consider modifying their existing workflows and policies to include identifiers for people at the outset, when new data are generated or when new specimens are acquired.
There is more work required at the global level to define, update, and ratify standards and best practices to help accelerate data exchange or roundtrips of this information; there is room for all contributions. Thankfully, there is a diverse, welcoming, energetic, and international community involved in these activities.
We see a bright future for you, our collections, and our research products – well within reach – when the identities of people play a pivotal role in the construction of a knowledge graph of life.
Groom Q, Bräuchler C, Cubey RWN, Dillen M, Huybrechts P, Kearney N, Klazenga N, Leachman S, Paul DL, Rogers H, Santos J, Shorthouse DP, Vaughan A, von Mering S, Haston EM (2022) The disambiguation of people names in biological collections. Biodiversity Data Journal 10: e86089. https://doi.org/10.3897/BDJ.10.e86089
👏Congrats to Giovanni Vimercati (Postdoc, @unifr) who received the Best Talk Award at #NeoBiota2022 for his presentation: "Assessing positive #socioeconomic impacts of alien #taxa within a unified framework"!🎉 Will be looking forward to your complimentary submission!😊 https://t.co/sDsgd747du
Giovanni Vimercati is a postdoctoral researcher at the University of Fribourg, Switzerland, and most recently recipient of the Best Talk award (Early Career Researcher) at the 2022 NEOBIOTA conference held in mid-September in Tartu, Estonia.
As a sponsor of the event and publisher of the NeoBiota journal, Pensoft granted a complimentary publication in it to the awardee.
NeoBiota readers might already be familiar with Vimercati, whose name first appeared on its pages in a 2017 paper that used alien amphibians as a case study to identify the differences and potential difficulties with two impact assessment scoring tools: the Environmental Impact Classification of Alien Taxa (EICAT) and the Generic Impact Scoring System (GISS).
Then, in 2020 and 2021, the researcher had two research articles published in NeoBiota as lead author. The 2020 paper provided a summary of the frameworks assessing beneficial impacts of alien species, while in the 2021 study his team used a spatially-explicit stage-structured model to assess efficacy of past, present and alternative control strategies for invasive guttural toads (Sclerophrys gutturalis) in Cape Town.
Giovanni Vimercati being awarded at NEOBIOTA 2022. Photo by Ana Novoa.
In anticipation of Vimercati claiming the Best Talk award with a forthcoming submission to the journal, we asked him to join us for an interview and share his thoughts on his research.
Going back to the beginning, what sparked your interest in the study of invasive species in particular? What are the unique aspects of your research?
Like the episodic nature of many biological invasions, my first contact with the study of alien species was quite “unexpected”. Having a strong interest in herpetology, I had the luck to pursue my doctoral research at the Center of Excellence for Invasion Biology (CIB) in Stellenbosch, South Africa, where I studied the invasion of an alien amphibian species. My PhD study, and the highly stimulating community of researchers that characterized the CIB, made me realize not only that invasive species provide an invaluable opportunity to address ecological and evolutionary questions, but also how important it is to study their impact on biodiversity and human communities.
One unique aspect of my research since then has been its multidisciplinary character, as I have studied biological invasions from multiple angles simultaneously, by using mathematical models, physiological experiments, field surveys, remote sensing, literature reviews, meta analysis, and questionnaires. It seems a paradox, but the uniqueness of my research on biological invasions is that it has never really been unique!
Are there recent developments in the field that you find particularly interesting to explore?
As many other scientific disciplines, the field of invasion science is highly dynamic, and novel developments emerge every year. However, I find of particular interest the development of new approaches and tools to explore the links between biological invasions and the various socio-economic contexts. The use of online structured and semi-structured interviews, or the development of standardized socio-economic indicators are, for example, particularly promising for future studies.
In addition, the emergence of novel technological tools, for instance, linked to remote sensing, eDNA, stable isotopes and camera trapping, or the rapid increase in the computational power of modern CPUs, are allowing invasion scientists to collect and analyze data that used to be unaffordable, or simply unavailable. It is certainly an exciting moment to be an invasion scientist.
What do you find to be the biggest challenges as a researcher in your field?
I find that the proliferation of hypotheses and frameworks that characterize the field of invasion biology are particularly intriguing and challenging. Many of them work extremely well in certain conditions or across specific taxonomic groups, but they often lack generality or are marred by context dependence, which may limit their predictive power.
Addressing such a context dependence and finding ways to integrate various hypotheses and frameworks in invasion biology will be highly beneficial for understanding and forecasting biological invasions in the next decades.
Another challenge is to communicate the implications of our research to non-experts. I often wonder how stakeholders and policymakers from different cultural backgrounds or geographic regions perceive alien species and their impacts.
The theme of this year’s NEOBIOTA conference was “Biological Invasions in a Changing World”. To what extent can changes be anticipated and forecasted in order to make the work of assessing their impacts and mitigating damage easier?
I think that a key point would be to focus on specific indicators or proxies to measure these changes, so that different impacts and species can be quantified, both transparently and consistently.
In recent years, the field has produced a huge body of literature regarding impacts caused by alien species, but the results of these studies have not always been comparable. I feel that the development of the EICAT framework and its recent adoption by the IUCN as a global standard for measuring the magnitude of environmental impacts of alien species were two very important steps in this direction.
Your talk at the NEOBIOTA conference focused on the positive socio-economic impacts of invasive species. Why is this important for different stakeholders, including policy makers, but also local communities and individuals?
In my opinion, invasive species, and more generally alien species, can have various positive socio-economic impacts that should be identified and assessed rigorously. These impacts are often anecdotally reported or vaguely stated in the literature, a tendency that hampers our capacity to identify (and forecast) conflicts of interest among different stakeholders or understand their perceptions toward alien species.
In my talk, I presented the preliminary version of a framework that assesses positive socio-economic impacts. The framework is based on the capability approach, and aims to quantify the degree to which the well-being of certain human communities increases after the introduction of alien species. Of course, the scheme won’t be used in isolation, but rather in combination with other frameworks that assess the negative socio-economic and environmental impacts of alien species, so that their effects can be understood in their full complexity.
The PhD student at University of Kansas shares about her work on the amphibians and reptiles of the Philippenes that earned her the Best Poster Award at SAGE 2022
Now, the first author of the study, PhD student Camila G. Meneses (University of Kansas), who was awarded at SAGE 2022 for her poster: “A New Species of Fringed Forest Gecko, Genus Luperosaurus (Squamata: Gekkonidae), from Sibuyan Island, Central Philippines” joins us for an interview, sharing some further insights into her research and recent publication.
Congratulations for your Best Poster award at SAGE 2022! Can you introduce the topic of your poster to our readers? How does it fit in the broader context of your research?
The poster is entitled “A New Species of Fringed Forest Gecko, Genus Luperosaurus (Squamata: Gekkonidae), from Sibuyan Island, Central Philippines”. We are currently describing a new species of one of the rarest endemic Philippine lizards which corresponds to the Sibuyan Island population in central Philippines.
It is a poorly understood Southeast Asian and Southwest Pacific genus Luperosaurus, known popularly as fringed geckos, wolf geckos, or flap-legged geckos, and is documented here for the first time.
In the context of my research, visualizing historical, dry land connections that were once shared among modern islands has been crucial for understanding the distribution of biodiversity in the Philippines, an archipelago in which sea level oscillations during the Pleistocene undoubtedly influenced the assembly of regionalized floras and faunas. Sibuyan Island, separated by deep-water channels from neighboring landmasses, harbors distinct communities of amphibians and reptiles, many of which are island endemics.
Happy to see your Annotated List of Species for amphibians and reptiles from the central Philippines, which just got published in the open-access journal Check List. Can you tell us a bit more about the biodiversity of the region and what made you and your co-authors choose it for your survey?
Centers of endemism in the Philippine archipelago coincide with the physiography of the greater Pleistocene Aggregate Islands Complexes (PAICs) of Luzon, Palawan, Negros-Panay (West Visayan islands), Mindoro, Mindanao, and the Sulu Archipelago during Pliocene and Pleistocene sea level regressions according to Inger (1954) and Voris ( 2000). However, until relatively recently, little attention was paid to fully inventorying smaller islands like those in central Romblon Province. The province is not only known for its beautiful landscapes but also the seascape.
Sibuyan was identified as a focal site for this study because of its unique complex ecosystem with notable geologic history that contributed to its high endemism—oceanic origin, geographic isolation, elevational relief, and relatively intact forests. In addition, Sibuyan Island presents biogeographically compelling questions relating to the colonization history of organisms that could only have arrived on Sibuyan by dispersing over water .
We also considered that a comprehensive characterization of the diversity and distribution of amphibians and reptiles of Mount Guiting-Guiting would be highly desirable on the part of the local government, specifically the Protected Management Board and the regional Department of Environment and Natural Resources (Region IV-B) for future management planning. The additional information and data will strengthen their existing conservation programs, ideally by engaging local communities, wildlife managers, ecotourists, and university researchers in Romblon Province.
What are some of the unique or unexpected challenges you encounter in doing biogeographic research? How do you tackle them?
This is my first co-led (with the late young mammalogist, James Alvarez) big expedition in the country. The most challenging aspects for us as students this time are getting funding to do ridge to reef sampling for each season (wet and dry season), the inaccessibility of the area, and the unexpected natural calamities when we are at the peak of the mountain.
Biodiversity conservation efforts often depend on cooperation with non-experts in the field and wider support within the local community. What is the most important message that you hope your research helps transmit to the general audience?
Our knowledge of the endemic species diversity in these islands is still incomplete. It is of crucial importance to continue long-term, repeated biodiversity survey efforts that utilize a multifaceted approach and integration of an independent data stream for the understanding of small islands’ species community composition.
We encourage the conservation of the island’s seascape and landscape (one of the well-known tourist spots in the country), and we highly encourage interested students in nearby universities to continue studying the richly biodiverse areas in the province.
Finding excitement in your work is one of the great gifts of doing what you are passionate about. What brings you the most excitement?
For me, gradually getting answers for your own questions and making new discoveries are exciting, but of course the outstanding scenery, journey, experiences, skill sets being developed, and the stories we come to create during each expedition are priceless.
Did you happen to encounter your favorite species during the field surveys in Mount Guiting-Guiting Natural Park?
Honestly, when I am studying the diversity of amphibians and reptiles of Mt. Guiting-Guiting Natural Park, I consider every species that we collect my favorite.
Each survey site brings new knowledge (i.e., new elevation site recording, morphological variation, new distribution records, varied habitat type preferences of secretive species, etc). There are observations that have not been documented for some species in previous studies (even going back over 50 years ago in Brown and Alcala field collection, or more recently in the 2012 study by Siler et al.). This is especially the case for secretive RIG island endemics of amphibian and reptile species.
However, there are three species I can definitely say are my favorites — Brachymeles dalawangdaliri, Pseudogekko isapa, and the undescribed species of Fringed Forest Gecko These are very rare and secretive species of Philippine endemic lizards that can be found, we assumed, on Romblon Island Group and nowhere else in the world. Hence, the new collections are, we can say, very highly significant.
The first two have very few museum specimens, but we were lucky enough to document and collect enough samples to redescribe both species in terms of their morphological variations and know their first ever phylogenetic placement in relation to its related congeners (see Meneses et al. 2020). The third one is our new discovery of the Fringed-forest Gecko.
Soil and its macrofauna are an integral part of many ecosystems, playing an important role in decomposition and nutrient recycling. However, soil biodiversity remains understudied globally.
To help fill this gap and reveal the diversity of soil fauna in Hong Kong, a team of scientists from The Chinese University of Hong Kong initiated a citizen science project involving universities, non-governmental organisations and secondary school students and teachers.
“Involving citizens as part of the new knowledge generation process is important in promoting the understanding of biodiversity. Training younger-generation citizens to learn about biodiversity is of utmost importance and crucial to conservation engagement”
– say the researchers in their study, which was published in the open-access Biodiversity Data Journal.
The soil sampling methodology that the students employed in this study. Video by Sheung Yee Lai, Ka Wai Ting, Tze Kiu Chong and Wai Lok So.
Working side by side with university academics, taxonomists and non-governmental organisation members, students from 21 schools/institutes were recruited to collect soil animals near their campusesfor a year and record their observations.
Between October 2019 and October 2020, they monitored and sampled species across 21 sites of urban and semi-natural habitats in Hong Kong, collecting a total of 3,588 individual samples. Their efforts yielded 150 soil macrofaunal species, identified as arthropods (including insects, spiders, centipedes and millipedes), worms, and snails.
Most often, the students found millipedes (23 out of 150 species). They even helped identify two millipede species that are new to Hong Kong’s fauna: Monographis queenslandica and Alloproctoides remyi. The former is usually found in Australia – the researchers suggest it might have been introduced to the area many decades ago from Queensland or vice versa – and the latter has been observed in Reunion and Mauritius.
Two polyxenid millipede species, collected in this study, turned out to had never before been recorded from Hong Kong. Left: Monographis queenslandica and Alloproctoides remyi (right). Image by Sheung Yee Lai, Ka Wai Ting and Wai Lok So.
Millipedes like these two species can accelerate litter decomposition and regulate the soil carbon and phosphorus cycling, while earthworms can modify the soil structure and regulate water and organic matter cycling.
“Before the beginning of this project, the understanding of soil biodiversity in Hong Kong, including the understanding of its contained millipede species, was inadequate”
the researchers write in their paper.
Now, they believe that the identified macrofauna species and their 646 DNA barcodes have established a solid foundation for further research in soil biodiversity in the area.
Their project also serves an additional purpose. Unlike most conventional scientific studies, which are usually carried out by the government, non-governmental organisations or academics in universities alone, this study utilised a citizen science approach through creating a big community engaged with biodiversity. In doing so, it helped educate the public and raise awareness on the use of basic science techniques in understanding local biodiversity.
So, it may have inspired a new generation of future scientists: some students started millipede cultures in their own schools, and one school used the millipede breeding model to participate in a science and technology competition.
This study is a proof that local institutes and high schools can unite together with research teams at universities and perform scientific work, the study’s authors believe.
It “has raised public awareness and potentially opens up opportunities for the general public to engage in scientific research in the future.”
The team hopes that their approach could inspire future biodiversity sampling and monitoring studies to engage more citizen scientists.
***
Research article:
So WL, Ting KW, Lai SY, Huang EYY, Ma Y, Chong TK, Yip HY, Lee HT, Cheung BCT, Chan MK, Consortium HKSB, Nong W, Law MMS, Lai DYF, Hui JHL (2022) Revealing the millipede and other soil-macrofaunal biodiversity in Hong Kong using a citizen science approach. Biodiversity Data Journal 10: e82518. https://doi.org/10.3897/BDJ.10.e82518
An international collaboration led by the Doñana Biological Station (EBD-CSIC) has shown that experts are consistent when assessing the economic, health and ecological impacts of alien species. These assessments are therefore reliable to guide the prioritization of resources invested against biological invasions.
These results have a great impact on the management by national and international institutions, which have limited resources to fight against the growing and worrying increase of alien species invasions and the damage they caused to society and environment.
Biological invasions annually cause huge food losses, disease transmissions, species extinctions and ecosystem perturbations. For these reasons, it is one of the biggest problems that humankind currently faces, and its relevance will alarmingly increase due to the extreme situations that climate change will expose society to.
The seriousness of this problem lies in the limited human resources available to fight against it, that force to prioritize its management. Here is where tools such as impact assessments play a key role. Assessments report the impact of invasive species in different areas, including economy, health and environment, and allow us to rank the most harmful species.
For instance, in aquatic ecosystems like the Ebro Delta in Spain, there are dozens of invasive alien co-occurring species that cause millions of economic losses and irreparable ecological damage.
Such is the case of the Zebra mussel, which affects irrigation; the apple snail that devours rice fields; and the blue crab causing the local extinction and declines of many native species.
“That’s why it is crucial to ensure that the results are not dependent on the assessors and to understand what factors affect discrepancies among experts,”
explains Rubén Bernardo-Madrid, lead author and researcher at Doñana Biological Station – CSIC.
One of the relevant aspects of this study is the quantification of the consistency of responses across assessors for a large number of invasive species of vertebrates, invertebrates and plants. In addition, the researchers have studied multiple protocols focused on different aspects, providing a global view of this problem.
“The study has shown that the great majority of assessments are consistent and therefore valid to aid in decision-making. These results are encouraging as they suggest that these protocols may be useful when facing the worrying forecasts of increasing biological invasions and their damages,”
explains Rubén.
On the other hand, the researchers have observed that discrepancies across assessments might be due to multiple factors, such as the type of impact asked or the linguistic formulation used in the protocols.
The results suggest that there is room for improvement in assessments, but it will require more funding for research, and more multidisciplinary collaborations between ecologists and linguists to develop less ambiguous protocols.
As always, the most effective measure against biological invasions turns out to be prevention.
However, given the incapacity to control every voluntary and involuntary introduction, other tools such as impact assessments are essential to reduce as far as possible the damage caused by these species on human welfare and environment. Its continuous improvement and evaluation, such as the one made in this study, are decisive.
***
Research article:
Bernardo-Madrid R, González-Moreno P, Gallardo B, Bacher S, Vilà M (2022) Consistency in impact assessments of invasive species is generally high and depends on protocols and impact types. In: Giannetto D, Piria M, Tarkan AS, Zięba G (Eds) Recent advancements in the risk screening of freshwater and terrestrial non-native species. NeoBiota 76: 163-190. https://doi.org/10.3897/neobiota.76.83028
By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.
This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.
All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.
“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”
comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.
“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”
adds Yvonne Campfens, Executive Director of the OA Switchboard.
***
About the OA Switchboard:
A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.
About Pensoft:
Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.
All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.
Recently, our journal ZooKeys published a paper describing two new species of African Shovel-snout snakes: Prosymna confusa, endemic to dry habitats in southwestern Angola, and P. lisima, associated with the Kalahari sands.
We interviewed the authors of the study to find out how they made this discovery and what it means for biodiversity. Werner Conradie (South Africa), the leader of the project, collected most of the specimens and did all the morphological examinations and taxonomy work. Chad Keates (South Africa) conducted the molecular analysis, Javier Lobon-Roviara (Spain) did the CT-scanning skull reconstruction, and Ninda Baptista (Angola) performed fieldwork.
Live P. lisima sp. nov. from eastern Angola.
Interview with Werner Conradie, Chad Keates, Ninda L. Baptista, and Javier Lobón-Rovira
Why has the taxonomy of African Shovel-snout snakes been so complicated?
While widespread, the group is infrequently encountered, resulting in a relatively low number of samples being collected through time. This, coupled with the animals’ curious skull structure and anomalous ecology, has puzzled scientists for decades. While we finally seem to have a grip on the higher-level taxonomy (their relatedness to other snakes), their relations among each other remain incomplete. One thing is for sure, the next few years will likely result in the discovery and description of many more.
Live P. confusa. Photo by Bill Branch
Please walk us through your research process.
Similar to solving a puzzle, the process starts off by acquiring the pieces. The pieces come in the form of samples, collected by us and by scientists, accessioned in museums all over the world. Once all the pieces are in one place, it becomes our job to piece them all together and build a picture of the taxonomy of the group. We start in the corners, ironing out our hypotheses. Once we have the outline, a theory of the species composition of the group, we get to work building the puzzle using evidence from multiple different species concepts.
Snapshots from the field.
We use genetics, morphology, ecology, and skull osteology and through fitting these concepts together we start to see our species and the boundaries between them. Large chunks of the puzzle begin to take shape, revealing our picture with ever-increasing clarity. As we find, orientate, and fit the last pieces of our puzzle through the creation and completion of the manuscript, we finish the puzzle and in doing so provide you with the complete picture: the updated taxonomy of Angolan shovel-snout snakes.
When did you realize you were dealing with new-to-science species?
It’s hard to pinpoint exactly, but the idea grew from the moment Werner Conradie picked up the first snake whilst on the first expedition with the Okavango Wilderness Project, back in 2016. Funded by National Geographic and managed by the Wild Bird Trust, this paper would not be possible without them, because without the transport and logistical support, most of our dataset would never have been found.
Live P. lisima sp. nov. from eastern Angola.
What makes these new species unique?
With the aid of modern nano computerised tomography scanning technology, we observed that one of the new species has a well-developed postorbital bone. We still don’t know the purpose of this postorbital bone and why it is absent in the others. We believe it might serve as additional muscle attachment points that aids them on feeding on different kinds of lizard eggs than the others.
Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates
This is also the first new species of Shovel-snouted snake described in nearly 30 years.
In the late 1980’s Zimbabwean herpetologist, Donald Broadley noted that eastern populations of the Angolan Shovel-snouted snake may be a different species. It took nearly 50 years before more material was collected and with the aid of modern technology, like genetic analysis and CT-scanning, we could show he was correct and described it as a new species.
What can you tell us about their appearance and behavior?
The Shovel-snouted snakes are unique snakes with a beak-like snout that allow them to dig into sandier soils. Thus most of the time they are below the surface and only come out after heavy rains. They also possess unique backward pointed lancet-shaped teeth that they use for cutting open lizard eggs. These snakes specialize in feeding mostly on soft-shell lizard eggs. They find a freshly laid clutch of eggs and one by one, they swallow them whole. They cut them laterally so that the yolk can be released.
Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates
Do they interact with people?
These snakes may be encountered by people tending to their lands or crossing the road, but, for the most part, they are incredibly secretive. Because of their ability to burrow in soft soils, these animals are infrequently encountered, only forced to the surface during heavy rain and by the urge to breed and to feed. If encountered, however, these snakes pose absolutely no harm, as they possess no venom. When threatened, these animals may wind themselves into a tight coil to protect their heads.
Kalahari Shovel-snout snake (Prosymna lisima) from southeastern Angola. Photo by Chad Keates
What is the ecological role of these snakes?
Much like most small vertebrates, these animals form an important component of the food web. They consume lizard eggs, exerting a regulatory force on newborn lizards, and serve as food for larger snakes, rodents, and birds. Animals like these form the bedrock of any healthy ecosystem as they contribute to energy exchanges and the flow of nutrients down and up and down again.
Bonus question: how did you get involved in herpetology?
Everyone in the group has a soft spot for reptiles and amphibians’. Irrespective of our contrasting upbringing and our nation of origin, we all came to herpetology independently. While it is hard to unpack the moment that we all fell in love with these weird and wonderful creatures, one thing is for sure, it’s a lifetime commitment.
About the Authors
Werner Conradie holds a Masters in Environmental Science (M. Env. Sc.) and has 17 years of experience with southern African herpetofauna, with his main research interests focusing on the taxonomy, conservation, and ecology of amphibians and reptiles. Werner has published numerous principal and collaborative scientific papers, and has served on a number of conservation and scientific panels, including the Southern African Reptile and Amphibian Relisting Committees. He has undertaken research expeditions to many African countries including Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Zambia, and Zimbabwe. Werner is currently the Curator of Herpetology at the Port Elizabeth Museum (Bayworld), South Africa.
Chad Keates is a post-doctoral fellow at the African herpetology lab at Port Elizabeth museum (Nelson Mandela University, based in the SAIAB Genetics Platform). Having recently completed his PhD in Zoology, Chad’s research focusses are African herpetofauna and their evolutionary and ecological structuring. In Chad’s short professional career, he has published several principal and collaborative peer-reviewed scientific papers and book chapters. Chad is also a strong advocate for reptile and amphibian awareness and regularly conducts walks, talks and presentations as well as produces numerous popular scientific outputs on the subject. He has undertaken numerous expeditions to many African countries such as Angola, Zambia and South Africa with a variety of both professional and scientific organisations.
Ninda Baptista is an Angolan biologist, holds an MSc degree in Conservation Biology from the University of Lisbon, and is currently enrolled for a PhD in Biodiversity, Genetics and Evolution in the University of Porto, addressing the diversity of Angolan amphibians. Over the last 12 years she has worked on environmental consulting, research and in-situ conservation projects in Angola, including priority areas for conservation such as Kumbira, Mount Moco and the Humpata plateau. She conducted herpetological surveys throughout the country and created a herpetological collection (Colecção Herpetológica do Lubango), currently deposited in Instituto Superior de Ciências da Educação da Huíla (ISCED – Huíla). Ninda is an author of scientific papers and book chapters on Angolan herpetology and ornithology. She also works on scientific outreach, producing magazine articles, books for children and posters about the country’s biodiversity in collaboration with Fundação Kissama.
Javier Lobón-Rovira is PhD student at Cibio, Portugal, working to unveil evolutionary pattern in southern Africa gekkonids. As Biologist he has worked in different conservation projects and groups around the globe, including reptiles and amphibians at Veragua Rainforest Foundation, Costa Rica or big mammals in Utah, USA. However, as photographer, he has collaborated with different Conservation NGOs in Africa, America and Europe and manage to publish on International Journals as National Geographic, Africa Geographic or Nature’s Best Magazine.
Read the study:
Conradie W, Keates C, Baptista NL, Lobón-Rovira J (2022) Taxonomical review of Prosymna angolensis Boulenger, 1915 (Elapoidea, Prosymnidae) with the description of two new species. ZooKeys 1121: 97-143. https://doi.org/10.3897/zookeys.1121.85693
Recent botanical expeditions in Caquetá department (southeastern Colombia) have uncovered the enormous richness of plant species in this region. Research led by W. Trujillo in the Andean foothills has allowed the unveiling of at least 90 species of Piper in the region, highlighting northwestern Amazonia as one of the richest regions for the genus. Here, four new species of Piper new to science are described.
Andean foothills in Caquetá, Colombia. Photo by William Trujillo
This publication is the result of a collaboration between three institutions and five researchers, each contributing their experience and strengths: main author William Trujillo (Fundación La Palmita), with M. Alejandra Jaramillo (Universidad Militar Nueva Granada), Edwin Trujillo Trujillo, Fausto Ortiz and Diego Toro (Centro de Investigaciones Amazónicas Cesar Augusto Estrada Gonzalez, Universidad de la Amazonia). W. Trujillo, a native of Caquetá, has dedicated the last ten years to the study of Piper species in his department. M. A. Jaramillo has been studying the phylogenetics, ecology and evolution of the genus for more than 20 years. Edwin Trujillo is a local botanist well versed in the flora of Caquetá and the Colombian Amazon. Fausto Ortiz and Diego Toro are trained in plant molecular biology methods and lead this area at Universidad de la Amazonia.
Amazonian slopes of the Andes, Caquetá with Iriartea deltoidea palms. Photo by William Trujillo
Caquetá is situated where the Andes and the Amazon meet in southern Colombia, in the northwestern Amazon. Several researchers have highlighted the importance of the northwest Amazon for high biodiversity and our lack of knowledge of the region. Fortunately, ongoing studies led by W. Trujillo and E. Trujillo are unveiling the immense diversity of plants in Caquetá, showing the importance of local institutions in the knowledge of Amazonian flora. There are many species in the region yet to be described and discovered. Leadership from local institutions and collaboration with experts are vital to appreciating the great relevance of plants from Caquetá.
Piper indiwasii, branch with leaves and spikes. Photo by William Trujillo
Two of the species in this manuscript (Piper indiwasii and Piper nokaidoyitau) bear names inspired by the indigenous tribes that live in Caquetá. The name indiwasii comes from a Quechua word meaning “house of the sun” and is also the name of one of the National Parks where the species lives in southern Colombia. In its turn, nokaidoyitau comes from the Murui language and means “tongue of the toucan,” the way the Murui Indians of the Colombian Amazon call the species of Piper. In fact, local communities rely on these plants for medicinal purposes, using them against inflammations or parasites, or to relieve various ailments.
branch with leaves and spikesbranch with leaves and flowering spikesPiper nokaidolyitau. Photos by William Trujillo
Furthermore, the other two new species (Piper hoyoscardozii and Piper velae) honor two Amazonian naturalists, the authors’ dear friend Fernando Hoyos Cardozo, and Dr. Vela. Fernando, who was a devoted botanist and companion in W. Trujillo’s botanical expeditions. Dr. Vela, a naturalist and conservation enthusiast who sponsored Trujillo’s trips, was killed in 2020. We miss him immensely. His death is a significant loss for the environment in Caquetá.
branch with leaves and fruiting spikesDetails of the leaves base, internodes and fruiting spikePiper velae. Photos by William Trujillo
The team’s joint effort will continue to describe new species, explore unexplored regions, and inspire new and seasoned researchers to dive into the magnificent diversity of the Colombian Amazon.
Piper hoyoscadozii, branch with leaves and fruiting spikes. Photo by Fernando Hoyos
Research article:
Trujillo W, Trujillo ET, Ortiz-Morea FA, Toro DA, Jaramillo MA (2022) New Piper species from the eastern slopes of the Andes in northern South America. PhytoKeys 206: 25–48. https://doi.org/10.3897/phytokeys.206.75971
While every Flora publication is an incredibly valuable scientific resource, Vol. 45 is the first in the series to be made available in digital format, following its publication in the open-access journal PhytoKeys
The 45th volume of the Flora of Cameroon pilots a novel “Flora” section in the journal to promote accessibility and novelty in plant taxonomy
Dedicated to Annonaceae, the 45th volume of the Flora of Cameroon is the result of over 15 years of work on the systematics of this major pantropical group, commonly known as the Custard apple family or the Soursop family, and its diversity in one of the most biodiverse African countries, whose flora has remained understudied to this date.
In their publication, the authors: Thomas L. P. Couvreur, Léo-Paul M. J. Dagallier, Francoise Crozier, Jean-Paul Ghogue, Paul H. Hoekstra, Narcisse G. Kamdem, David M. Johnson, Nancy A. Murray and Bonaventure Sonké, describe 166 native taxa representing 163 species in 28 native genera, including 22 species known solely from Cameroon. The team also provides keys to all native genera, species, and infraspecific taxa, while a detailed morphological description and a distributional map are provided for each species.
Specimen of Uvariastrum zenkeri from Cameroon. Photo by Thomas L.P. Couvreur.
Amongst the findings featured in the paper is the discovery of a previously unknown species of a rare tree that grows up to 6 metres and is so far only known from two localities in Cameroon. As a result of their extensive study, the authors also report that the country is the one harbouring the highest number of African species for the only pantropical genus of Annonaceae: Xylopia.
While every Flora publication presents an incredibly valuable scientific resource due to its scale and exhaustiveness, what makes Volume 45 of the Flora of Cameroon particularly special and important is that it is the first in the series to be made available in digital format, following its publication in the peer-reviewed, open-access journal PhytoKeys.
Available in the open-access scholarly journal PhytoKeys, the latest volume of the Flora of Cameroon features perks like displaying occurrences of treated taxa side-by-side when reading the publication in HTML.
As such, it is not only available to anyone, anywhere in the world, but is also easily discoverable and minable online, as it benefits from the technologically advanced publishing services provided by the journal that have been specially designed to open up biodiversity data. While the full-text publication is machine-readable, hence discoverable by search algorithms, various data items, such as nomenclature, descriptions, images and occurrences, are exported in relevant specialised databases (e.g. IPNI, Plazi, Zenodo, GBIF). In their turn, the readers who access the HTML version of the publication may enjoy the benefits of this semantically enriched format, as they navigate easily within the text, and access further information about the mentioned and hyperlinked taxa.
In fact, the Annonaceae contribution is the first to use the newly launched publication type in PhytoKeys: Flora.
Yet, to keep up with the much treasured tradition, the new publication is also available in print format, accompanied by its classic cover design.
In the field: Narcisse G. Kamdem (Université de Yaoundé I, Cameroon), co-author of the Flora of Cameroon – Annonaceae Vol 45. Photo by Thomas L.P. Couvreur.
When we spoke with the team behind the Flora, we learnt that they are all confident that having the new volume in both print and open-access digital formats, is expected to rekindle the interest in the series, especially amongst younger botanists in Cameroon.
“The hybrid publication is a response to the reluctance to publish new volumes of these series. The hybrid version pioneered in Volume 45, is an opportunity for any scientist to freely access this fundamental work, and eventually use it in future studies. Also, the online and open access format is intended to stimulate botanists to author family treatments without the fear of not having their work published online in an academic journal with an Impact Factor,”
“The chosen format marks a qualitative leap in the presentation of the Flora of Cameroon and will be of interest to young botanists, who until now might have found the old presentation of the Flora unrewarding,” adds Prof. Bonaventure Sonké, last author and Head of the Biology Department of the Université de Yaoundé 1, Cameroon.
In the field: Prof. Bonaventure Sonké, last author and Head of the Biology Department of the Université de Yaoundé 1. Photo by Thomas L.P. Couvreur.
*
As an extensive contribution to a previously understudied area of research, the value of the new publication goes beyond its appreciation amongst plant taxonomists.
“The Flore du Cameroun series is considered as a showcase of the National Herbarium of Cameroon, which promotes knowledge of the flora of Cameroon at all levels. Being able to identify plants and trees is the first and foremost step to addressing the issue of ill-management of forest regions in Cameroon and the Congo Basin as a whole. If planning continues to rely on badly made identification, the forecasts about our resources are not good at all,” says Prof. Jean Betti Largarde, Head of the National Herbarium of Cameroon, and Editor-in-Chief of the Flora of Cameroon.
Narcisse G. Kamdem, co-author of the Flora of Cameroon. Photo by Thomas L.P. Couvreur.
“Plant taxonomy is the basic discipline for the knowledge, conservation and sustainable management of biodiversity, including animals, plants and habitats. Young Cameroonian botanists, privileged to having such floristic richness in their country, are invited to take an interest in it. This is the field that opens the mind and makes it possible to address all other aspects of botanical research and development in relation to natural resources,”
adds Jean Michel Onana.
Research article:
Specimen of Sirdavidia solanona in its natural habitat. Photo by Thomas L.P. Couvreur.
Couvreur TLP, Dagallier L-PMJ, Crozier F, Ghogue J-P, Hoekstra PH, Kamdem NG, Johnson DM, Murray NA, Sonké B (2022) Flora of Cameroon – Annonaceae Vol 45. PhytoKeys 207: 1-532. https://doi.org/10.3897/phytokeys.207.61432