Desert locusts remain a serious threat to Pakistan

The recent Desert Locust upsurge had a major impact on Pakistan’s agriculture, with swarms causing immense damage to all types of crops. A joint French-Pakistani team provides an overview of the dynamics of this upsurge, assesses its impact and control measures, and clarifies the role of different stakeholders in the management of this pest, suggesting various improvements for the future. The study was published in the open access Journal of Orthoptera Research.

In 2019 and 2020, desert locusts once again plagued parts of East Africa and huge areas as far as India and Pakistan through the Arabian Peninsula, in an infestation that was described as the worst in decades. A serious agricultural pest, the desert locust Schistocerca gregaria can feed on most types of crops, including grains, vegetables and fruit, causing significant damage to agricultural production and threatening food security in many countries.

Since the 1960s, a preventive control strategy against this pest has been implemented, based on monitoring of outbreak areas and ecological conditions, followed, if necessary, by early intervention and limited use of pesticides, so that any outbreak can be stopped as soon as possible. With 60 years of hindsight, desert locust invasions are now less frequent, smaller in scale and, if they cannot be stopped early, they are adequately managed.

Desert Locust: mature adult. Photo by A. Monard, CIRAD

However, financial and political uncertainties in many parts of the desert locust’s range continue to sustain the threat, and not all invasions can be stopped early. This was the case in 2018, when such an upsurge was largely aided by rains in the southern Arabian Peninsula. Locusts could not be detected for several months and therefore went unchecked, mainly due to the insecure conditions, especially in Yemen. The swarms then progressively contaminated a large part of East Africa and spread to Iran, Pakistan and India. Pakistan, in particular, subject to periodic swarm invasions in the past, faced a particularly severe situation in 2019-2020, where the swarms could only be contained after several months of intensive control.

Scientists Riffat Sultana, Ahmed Ali Samejo and Samiallah Soomro (University of Sindh, Pakistan), Santosh Kumar (University of Cholistan, Pakistan) and Michel Lecoq (former director of a locust research unit at CIRAD, France) synthesised these two years of upsurge in a new research article published in the open-access Journal of Orthoptera Research. They focused on Pakistan, the damage caused in this country, and the surveillance and control operations undertaken, clarifying, at the same time, at both national and international level, the role of the different actors in the management of this pest, and suggesting some improvements for the future.

Desert Locust: hopper. Photo by A. Foucart, CIRAD

During this upsurge, a great deal of damage was caused to all types of crops. The Government of Pakistan’s preliminary estimate of monetary losses due to desert locusts for the agricultural seasons 2020 and 2021 ranges from $3.4 billion to $10.21 billion. More than 3 million people were facing severe acute food insecurity.

The authors also note that Pakistan needs to continue to be prepared and improve the prevention system already in place. They suggest developing compensatory measures for local populations in the event of an uncontrolled invasion at an early stage, increasing the use of alternatives to chemical pesticides such as mycopesticides, and maintaining funding mechanisms that provide sustainable support even in times of recession. Perhaps the most important challenge is certainly to maintain long-term efforts to build resilience, despite the apparent absence of imminent threats.

Research article:

Sultana R, Kumar S, Samejo AA, Soomro S, Lecoq M (2021) The 2019–2020 upsurge of the desert locust and its impact in Pakistan. Journal of Orthoptera Research 30(2): 145-154. https://doi.org/10.3897/jor.30.65971

The first Red List of Taxonomists in Europe is calling for the support of insect specialists

The Red List of Taxonomists portal, where taxonomy experts in the field of entomology can register to help map and assess expertise across Europe, in order to provide action points necessary to overcome the risks, preserve and support this important scientific community, will remain open until 31st October 2021.

About 1,000 insect taxonomists – both professional and citizen scientists – from across the European region have already signed up on the Red List of Taxonomists, a recently launched European Commission-funded initiative by the Consortium of European Taxonomic Facilities (CETAF), the International Union for Conservation of Nature (IUCN) and the scholarly publisher best-known for its biodiversity-themed journals and high-tech innovations in biodiversity data publishing Pensoft.

Insect taxonomists, both professional and citizen scientists, are welcome to register on the Red List of Taxonomists portal at: red-list-taxonomists.eu and further disseminate the registration portal to fellow taxonomists until 31st October 2021.

Within the one-year project, the partners are to build a database of European taxonomy experts in the field of entomology and analyse the collected data to shed light on the trends in available expertise, including best or least studied insect taxa and geographic distribution of the scientists who are working on those groups. Then, they will present them to policy makers at the European Commission.

By recruiting as many as possible insect taxonomists from across Europe, the Red List of Taxonomists initiative will not only be able to identify taxa and countries, where the “extinction” of insect taxonomists has reached a critical point, but also create a robust knowledge base on taxonomic expertise across the European region to prompt further support and funding for taxonomy in the Old Continent.

On behalf of the project partners, we would like to express our immense gratitude to everyone who has self-declared as an insect taxonomist on the Red List of Taxonomists registration portal. Please feel welcome to share our call for participation with colleagues and social networks to achieve maximum engagement from everyone concerned about the future of taxonomy!

***

Read more about the rationale of the Red List of Taxonomists project.

***

Follow and join the conversation on Twitter using the #RedListTaxonomists hashtag. 

Dating in a jungle: Female praying mantises jut out weird pheromone gland to attract mates

Scientists from the Ruhr-University and the Bavarian State Collection of Zoology discovered that females of a South American species protrude a Y-shaped organ on their backs to release pheromones and attract males. Found in none of the over 2,500 species of praying mantises worldwide, the behaviour is reported for the first time in the peer-reviewed scientific Journal of Orthoptera Research.

Female of Stenophylla lobivertex with protruded pheromone gland
(Photo by Christian J. Schwarz)

It isn’t only myriads of currently unknown species that await discovery in the Amazon rainforests. As a new study by German scientists at the Ruhr-University (Bochum) and the Bavarian State Collection of Zoology (Munich)published in the open-access peer-reviewed scientific Journal of Orthoptera Research, concludes, it seems that so do plenty of unusual behaviours.

“When I saw the maggot-like structures peeking out from the back of the praying mantis and then withdrew, I immediately thought of parasites that eat the animal from the inside, because that is not really uncommon in insects,”

says Frank Glaw, a reptile and amphibian expert from the Bavarian State Collection of Zoology, who discovered the unusual phenomenon.
How does the Alien Mantis (Stenophylla lobivertex) attract partners?

However, it took specialists in this particular animal group to solve the riddle. Although the experts had seen nothing like this in praying mantises before either, they pointed out that there are other species of mantises, in which mostly unfertilised females release pheromones from a gland in the same part of the body (between the 6th and 7th tergite), in order to attract mates. The Y-shaped organ, which can stretch up to 6 mm in length, is in fact an advanced pheromone gland, which the insect controls with the help of hemolymph.

“We suspect that Stenophylla lobivertex can release the pheromones with the protrusible organ more efficiently and in a more targeted manner than other praying mantises,”

says Christian J. Schwarz, entomologist at the Ruhr-University.

“This can be very important, especially for rare species with a low population density, so that males can reliably find their females.”

Stenophylla lobivertex is a very rare species and lives hidden in the Amazon rainforests. Discovered only 20 years ago, the bizarre-looking and well-camouflaged animal has only been spotted a few times, and apparently only mates at night in the darkness.

Stenophylla lobivertex is a rare praying mantis from the Amazon rainforest. Its ‘true’ face becomes apparent only at second glance
(Photo by Christian J. Schwarz)

***

Follow Journal of Orthoptera Research on Twitter and Facebook.

***

Publication:

Schwarz CJ, Glaw F (2021) The luring mantid: Protrusible pheromone glands in Stenophylla lobivertex (Mantodea: Acanthopidae). Journal of Orthoptera Research 30(1): 39-41. https://doi.org/10.3897/jor.30.55274

Ancient Mantis-Man Petroglyph Discovered in Iran

A unique rock carving found in the Teymareh rock art site (Khomein county) in Central Iran with six limbs has been described as part man, part mantis. Rock carvings, or petroglyphs, of invertebrate animals are rare, so entomologists teamed up with archaeologists to try and identify the motif. They compared the carving with others around the world and with the local six-legged creatures which its prehistoric artists could have encountered.

Entomologists Mahmood Kolnegari, Islamic Azad University of Arak, Iran; Mandana Hazrati, Avaye Dornaye Khakestari Institute, Iran; and Matan Shelomi, National Taiwan University teamed up with freelance archaeologist and rock art expert Mohammad Naserifard and describe the petroglyph in a new paper published in the open access Journal of Orthoptera Research

The Teymareh rock art site in central Iran (Markazi Province, Iran), where the petroglyph was found
Photo by Mr Mahmood Kolnegari

The 14-centimetre carving was first spotted during surveys between 2017 and 2018, but could not be identified due to its unusual shape. The six limbs suggest an insect, while the triangular head with big eyes and the grasping forearms are unmistakably those of a praying mantid, a predatory insect that hunts and captures prey like flies, bees and even small birds. An extension on its head even helps narrow the identification to a particular genus of mantids in this region: Empusa.

Even more mysterious are the middle limbs, which end in loops or circles. The closest parallel to this in archaeology is the ‘Squatter Man,’ a petroglyph figure found around the world depicting a person flanked by circles. While they could represent a person holding circular objects, an alternative hypothesis is that the circles represent auroras caused by atmospheric plasma discharges.

It is presently impossible to tell exactly how old the petroglyphs are, because sanctions on Iran prohibit the use of radioactive materials needed for radiocarbon dating. However, experts Jan Brouwer and Gus van Veen examined the Teymareh site and estimated the carvings were made 40,000–4,000 years ago. 

One can only guess why prehistoric people felt the need to carve a mantis-man into rock, but the petroglyph suggests humans have linked mantids to the supernatural since ancient times. As stated by the authors, the carving bears witness, “that in prehistory, almost as today, praying mantids were animals of mysticism and appreciation.”

Sarkubeh village (Markazi province, Iran) is the closest
to the studied site human habitation
Photo by Mr Mahmood Kolnegari

Original source:

Kolnegari M, Naserifard M, Hazrati M, Shelomi M (2020) Squatting (squatter) mantis man: A prehistoric praying mantis petroglyph in Iran. Journal of Orthoptera Research 29(1): 41-44. https://doi.org/10.3897/jor.29.39400

Two fish a day keep the mantid coming back to prey: The 1st fishing praying mantis

Commonly known to predate on insects, praying mantises have occasionally been observed to feed on vertebrates, including small birds, lizards, frogs, newts, mice, snakes and turtles. Mostly, such records have either not been scientifically validated or have occurred under induced and human-manipulated circumstances.

Nevertheless, no scientific data of mantises preying on fish existed until the recent study of Roberto Battiston, Musei del Canal di Brenta, Rajesh Puttaswamaiah, Bat Conservation India Trust, and Nayak Manjunath, published in the open access Journal of Orthoptera Research.

Last year, the team observed an adult male hunting and devouring guppies in a pond located in a private roof garden in Karnataka, India. Curiously enough, the predator came back five days in a row and caught a total of nine fish (a minimum of two a day). To reach its prey, the insect would walk on the leaves of water lilies and water cabbage growing on the surface of the pond.

The artificial pond with the praying mantis sitting on a leaf visible to the right.

Apart from being a curious first-of-its-kind, the observation raises three new discussion points worthy of further study, point out the researchers.

Firstly, the fact that praying mantises hunt on vertebrates outside cages in labs confirms that a single invertebrate species is indeed capable of having an impact on a whole ecosystem. In this case, a mantis preys on guppies which, in their turn, feed on aquatic insects.

The mantis eating a guppy starting from the tail, while the fish is still alive and breathing in the water.

Secondly, the discovery questions previous knowledge about the visual abilities of mantises. While the structure of their eyes clearly indicates that they have evolved to prey in daylight, the studied male specimen proved to be an excellent hunter in the dark. The insect managed to catch all nine fish either at sunset or late at night.

Besides visual, mantises might have evolved impressive learning abilities too. The researchers speculate that the observed repetitive behaviour might have been the result of personal experience, utilised to navigate the specimen. Sophisticated cognitive skills, on the other hand, might have allowed the mantis to develop its hunting strategies.

“Remembering the prey’s abundance in a particular site, in relation to their ease of capture and their nutritional content, could be one important factor of this choice and indirectly influence the individual predator’s fitness,” comment the scientists. “This should be investigated in further studies.”

Ready to hunt.

Original source:

Battiston R, Puttaswamaiah R, Manjunath N (2018) The fishing mantid: predation on fish as a new adaptive strategy for praying mantids (Insecta: Mantodea). Journal of Orthoptera Research27(2): 155-158. https://doi.org/10.3897/jor.27.28067

Journal of Orthoptera Research joins scholarly publisher Pensoft’s open access portfolio

The Orthopterists’ Society’s Journal of Orthoptera Research (JOR) joins the growing portfolio of open access titles published on the Pensoft-developed journal publishing platform ARPHA (abbreviation for Authoring, Reviewing, Publishing, Hosting and Archiving).

The first issue in collaboration with Pensoft is live on the new journal’s website as of June 2017.

logoWhile preserving its attractive and well-known style and global expertise on the order Orthoptera and other closely allied insect orders, the journal now offers increased accessibility through a modernised design, intuitive interface, and many high-tech perks for authors, readers, reviewers and editors alike.

In continuous publication since 1992, Journal of Orthoptera Research is no newcomer to the arena of entomological peer-reviewed journals. It has enjoyed an esteemed place in the canon as the only global scientific publication dedicated to publishing work on the grasshoppers, crickets and bushcrickets. Now, the move to Pensoft ushers the journal to a new digital age by providing a modernised platform for showcasing fascinating research on these most charismatic and valuable of insects.

Among the innovative advantages is fast-track and convenient publishing thanks to ARPHA. Each manuscript is carried through all stages from submission and reviewing to dissemination and archiving on a single platform to facilitate and expedite the process using the best technological capabilities. Furthermore, this results in publications available in three formats (PDF, XML, HTML) with state-of-the-art semantic enhancements, so that articles can be easily found, accessed and harvested by both humans and machines.

Among the nine articles comprising the first Journal of Orthoptera Research issue since joining Pensoft [JOR Vol. 26(1)], there is a new species of bushcricket from China that sings an unusually complex tune when courting its potential partners; a curious experiment in the colour-shifting abilities of adult grasshoppers; and a description of a unique YouTube video showing two male bushcrickets engaging in previously unreported sexual activities.

“It’s pretty exciting to welcome Journal of Orthoptera Research to Pensoft’s family,” says Pensoft’s founder and CEO Prof. Lyubomir Penev. “We first started discussions on the possible publication of the journal by Pensoft back in 2010 and have resumed them a couple of times since. I am happy to see the journal now published in the modern design and format it really deserves!”

“I’m certain that ARPHA will secure the right place for Journal of Orthoptera Research among a whole portfolio of excellent zoological journals. Our journal will definitely feel at home next to the names of Journal of Hymenoptera Research, Nota Lepidopterologica, Zoologia, ZooKeys and many others,” says Editor-in-Chief Dr. Corinna Bazelet.

website blog

The journal will continue being released biannually. Traditionally, it publishes research on the insect order Orthoptera, as well as its close allies – Blattodea, Mantodea, Phasmatodea, Grylloblattodea, Mantophasmatodea and Dermaptera. The range of biological studies of these insects includes diversity, conservation, and control and management of pest species. As for the article types accepted in the journal, in addition to original research, editors will be considering review articles, short communications, and articles focusing on policy and management of Orthoptera.

***

Follow Journal of Orthoptera Research on Twitter | Facebook.