Mysterious new moth species discovered in Europe

The moth, named Mirlatia arcuata, by a research team from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera of recent decades.

European Lepidoptera (butterflies and moths), with a currently known inventory of approximately 11, 000 species, are generally considered well-researched. However, a new genus and species from the Geometrid moth family described in the scientific journal ZooKeys tell a different story. The moth, named Mirlatia arcuata by a research team from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera of recent decades.

Decades-old UFO

In the early 1980s, Austrian amateur entomologist Robert Hentscholek collected three specimens of a moth species in southern Dalmatia, Croatia, which were integrated into his collection or given to colleagues without being identified. Decades later, the collection was sold to Toni Mayr, another hobbyist researcher from Austria, who immediately noticed the unusual insect that stood out from all known European species and couldn’t even be assigned to a known genus.

An adult female of Mirlatia arcuata.

The collector was contacted to provide more information, and it turned out that a male and a female specimen of the same species had been given to another collector who had since passed away. The female specimen was rediscovered in 2015 in the collection of the Natural History Museum in Vienna, while the whereabouts of the other specimen remained unknown. The unique male was finally presented to the Tyrolean Federal State Museums by Toni Mayr.

Light traps are set in Podgora, Croatia, in 2022. Photo by Stanislav Gomboc

In 2022, a research team was formed to identify this enigmatic moth, and it was finally described as a new genus and species in early November 2023. It was given the name Mirlatia arcuata, where Mirlatia is an aggregate of the stems of two Latin words that translate loosely as “bringing a surprise,” a reference to the surprising discovery of this curious new moth.

Cold-adapted or introduced?

Wing venation of a male Mirlatia arcuata.

The discovery of such a large and distinctive moth species in a well-explored region like southern Croatia might seem unlikely. However, according to researcher Peter Huemer of the Tyrolean State Museums (Ferdinandeum), who took part in the study, there was surprisingly little research conducted in that area during the moth’s flight season in March. “It’s possible that Mirlatia arcuata is a cold-adapted, winter-active species that would need to be sought in the middle of winter,” he says.

The hypothesis of introduction from other continents was discarded by the study authors for several reasons. Axel Hausmann from the Zoological State Collection in Munich examined all known moths from cold regions in the northern and southern hemisphere and could not identify a similar species from these regions. Furthermore, the collecting location in Podgora is not in close proximity to a port, and during the Yugoslavian era, the traffic in Dalmatian ports was rather limited. Also, Split and other Croatian ports were rarely visited by ships from other continents during the communist period. Additionally, Robert Hentscholek had never collected in the tropics, ruling out the possibility of a labeling error.

Many questions, few answers

Despite all efforts, the relationships of the new genus and species have not been definitively clarified. Even the assignment to the subfamily Larentiinae is not entirely secure and is based on a few features like wing venation. Initial genetic data from the mitochondrial COI barcode, as well as characteristics of the tympanal organ (auditory organ), point to a largely independent systematic position of the species. Further investigations of the entire genome could provide more clarity.

Habitat of Mirlatia arcuata in Podgora, Croatia. Photo by Stanislav Gomboc

Even less is known about the biology of the new species, apart from the fact that its known habitat consists of coastal rock biotopes with Mediterranean vegetation. In March 2022, Slovenian lepidopterologist Stane Gomboc initiated a comprehensive search, but it turned out to be unsuccessful. It’s possible that the moth’s flight season has already ended due to climate warming.

The study authors hope they will soon rediscover Mirlatia arcuata and know more about its habitat requirements and biology.

Research Article:

Hausmann A, László GM, Mayr T, Huemer P (2023) Surprising discovery of an enigmatic geometrid in Croatia: Mirlatia arcuata, gen. nov., sp. nov. (Lepidoptera, Geometridae). ZooKeys 1183: 99-110. https://doi.org/10.3897/zookeys.1183.110163

Follow ZooKeys on Facebook and X.

New insect genus discovered in one of the most biodiverse rain forest regions in the world

In their latest study, the researchers of the University of Turku in Finland describe a new wasp genus, Capitojoppa, to science.

The Allpahuayo-Mishana National Reserve in Peru has often been described as the most biodiverse rainforest in the world. For example, in recent decades, scientist have discovered several new bird species from the region. The researchers of the University of Turku in Finland have studied the insect biodiversity in Allpahuayo-Mishana for over twenty years. In their latest study, the scientist described a new wasp genus, Capitojoppa, to science.

In their newly published study, the researchers describe a new wasp genus Capitojoppa to science, categorising it to the subfamily Ichneumoninae

Capitojoppa amazonica is a large parasitoid wasp species that has only been discovered in the Allpahuyao-Mishana National Reserve in the Peruvian Amazon. Photographer: Kari Kaunisto, Biodiversity Unit of the University of Turku. 

“Wasps belonging to this subfamily are usually large and colourful, especially in the tropics, and as larvae feed internally on moth and butterfly caterpillars and pupae. We have studied the biodiversity of ichneumonines in the Allpahuyao-Mishana National Reserve with the samples collected by the researchers of the University of Turku in Finland. In our studies, we have discovered several species unknown to science which we will describe in the future. The current study kicks off this research,” says Doctoral Candidate Brandon Claridge from the Utah State University in the United States.

The Allpahuyao-Mishana National Reserve first gained prominence in the scientific community in the late 1980s when an American botanist Alwyn Gentry documented the highest number of tree species at a single locality known to date.

“Gentry wanted to discover how many tree species can grow in one hectare (2.5 acres) of the Amazon rainforest. In his study, he discovered nearly 300 tree species in that one-hectare research patch. We have studied the insect biodiversity in the same research areas since 1998 and report some of the highest numbers of insect species in the world from this region. We also found Capitojoppa near the same research hectare used by Gentry,” says Professor of Biodiversity Research Ilari E. Sääksjärvi from the University of Turku, who collected the specimens during his field studies. 

Species unknown to science are described in research journals. Their names often describe the species’ characteristics or range. 

Photo: Kari Kaunisto, Biodiversity Unit of the University of Turku.

“The name Capitojoppa tells scientists a great deal about the characteristics of the newly discovered wasp genus. The wasps of the genus have a large head, which is reflected in the capito part of the name. It also refers to the barbet bird genus Capito found in South America, which have a large and strong beak. The joppa part of the name refers to the wasp genus Joppa that the Capitojoppa resembles. The specific species name amazonica refers to the Amazon,” Claridge explains. 

Finnish researchers helped in the conservation efforts of the Allpahuayo-Mishana Reserve in the 1990s. 

“Allpahuayo-Mishana is a part of the Amazon that has an unprecedented abundance of species. Due to the region’s complex geological history, there are several different types of rainforest growing in the Reserve. The species biodiversity of many organisms is highest on the whole planet at Allpahuayo-Mishana. We actively continue our studies in the region. Unfortunately, the area is currently changing rapidly due to human activities. With our insect studies, we are trying to find out how the impact of human activities, such as climate change, alter the nature in the rainforest,” says Professor Sääksjärvi. 

The group’s research article was published in the journal ZooKeys.

Research article:

Claridge BR, Kaunisto KM, Sääksjärvi IE (2023) Capitojoppa, a new genus of Ichneumoninae (Hymenoptera, Ichneumonidae) from Peruvian Amazonia. ZooKeys 1178: 69-76. https://doi.org/10.3897/zookeys.1178.108929

Not ugly but lovely: 100 ZooKeys papers on spiders co-authored by Shuqiang Li

Shuqiang has published 51 new genera and 677 new species in 100 ZooKeys papers.

Last week, on Friday, 6 October 2023, a research article entitled “One new genus and four new species of Liocranidae Simon, 1897 (Arachnida, Araneae) from China and Vietnam” by Chang Chu, Shuqiang Li, Yanbin Yao, Zhiyuan Yao was published. This is the 100th paper published in ZooKeys co-authored by Shuqiang Li, a leading spider specialist from the Chinese Academy of Sciences in Beijing, China. Shuqiang’s first ZooKeys paper was published on December 18, 2012. Until last Friday, Shuqiang has published 51 new genera and 677 new species in 100 ZooKeys papers.

Shuqiang started his scientific career as a spider taxonomist, with his first paper on the Linyphiidae of China published in 1987, followed by a series of revisions of known Chinese and Asia spider species. To date, he has documented more than 2,000 new species.

A glimpse into new spider species published in ZooKeys by Shuqiang Li. A. Macrothele limenghuai (Macrothelidae); B. Phrynarachne dreepy (Thomisidae); C. Onomastus chenae (Salticidae); D. Asianopis liukuensis (Deinopidae); E. Ectatosticta xuanzang (Hypochilidae); F. Megaeupoa yanfengi (Salticidae); G. Chilobrachys jinchengi (Theraphosidae); H. Platythomisus xiandao (Thomisidae).

He is also a proficient professor in the University of Chinese Academy of Sciences and has mentored more than 30 PhD students from China, Vietnam, and Italy, and another three M.Sc. students from Kenya and Malaysia. Most of his former Chinese PhD students have since become full professors. Shuqiang has been the Secretary of the Asian Society of Arachnology since 2012 and President of the Arachnology Society of China since 2018.

Femorbiona shenzhen, one of the new species described by Shuqiang Li and his colleagues in ZooKeys.

Many people see spiders as ugly due to their multiple legs, hairy bodies, and sometimes venomous fangs, but this appearance serves a purpose in their survival and adaptation to their environment. “Spiders are lovely animals”, Shuqiang said to us. He focuses mostly on fine spider structures. For example, he used spider copulatory organs (male palp and female epigyne) to study species taxonomy. “Interspecies mating is not easy due to difference in copulatory organs,” he says. He and his team members are also focusing on the origin of spider organs.

Follow ZooKeys on Facebook and X.

Bouldering in south-central Madagascar: a new “rock-climbing” gecko species of the genus Paroedura

Thanks to recently collected samples, it was described and named after its preferred habitat, the boulders surrounded by the last remaining forests at these sites.

Named after its habitat preference, Paroedura manongavato, from the Malagasy words “manonga” (to climb) and “vato” (rock), is a bouldering expert. Part of its “home range” is also very well-known to rock climbers for its massive granitic domes. “Its description represents another step into the crux (in climbing jargon, the most difficult section of a bouldering problem) of resolving the taxonomy of the recently revised P. bastardi group, where the new species belongs, and reaching a total of 25 described species in this genus, all exclusively living in Madagascar and Comoros,” says C. Piccoli from CIBIO – Research Center in Biodiversity and Genetic Resources, Portugal. She and her team just published a paper describing the new gecko.

Thus far, this species has only been found in Anja Reserve and Tsaranoro, both of which are isolated forest patches in the arid south-central plateau of Madagascar. These sites, at a distance of ca. 25 km, have a peculiar conformation, with huge granitic boulders close to rocky cliffs and surrounded by vegetation. The survival of P. manongavato, defined as microendemic for being restricted to a very narrow distributional range, thus depends on the preservation of these small forest patches. Subsequently, the authors proposed an evaluation of its conservation status as Critically Endangered, a category designated for species threatened of extinction by the International Union for Conservation of Nature.

Its discovery history is long, starting during the Malagasy summer of 2010, when the first evidence of another Paroedura species was found in Anja, together with the recently described P. rennerae in 2021. Distinguishing these two species on the field is a difficult task. Both species have prominent dorsal-enlarged keeled scales and a similar dorsal pattern, although adults of P. manongavato have an overall less spiky appearance, less contrasted dorsal markings, and a smaller body size compared to P. rennerae. The need to collect more samples brought researchers A. Crottini, F. Andreone, and G. M. Rosa to return to Anja in 2014, and collect the future holotype (i.e. the name-bearing and description reference individual) of this new species. Later in 2018, F. Belluardo, J. Lobón-Rovira, and M. Rasoazanany, visited Anja and Tsaranoro again and were able to collect several tissue samples and high-resolution photos of the reptiles living in the area, including the new gecko species. This cumulative data collection was fundamental to advance with its description.

Published in the open access journal ZooKeys, this study highlights the importance of conducting herpetological inventories in Madagascar to improve our understanding of species diversity and progress with species conservation assessments. “The description of this species shows the importance of collaborative efforts when documenting biodiversity, especially for those range-restricted and isolated species at greatest risk of disappearing,” points out the leading author of this study C. Piccoli.

Research article:

Piccoli C, Belluardo F, Lobón-Rovira J, Oliveira Alves I, Rasoazanany M, Andreone F, Rosa GM, Crottini A (2023) Another step through the crux: a new microendemic rock-dwelling Paroedura (Squamata, Gekkonidae) from south-central Madagascar. ZooKeys 1181: 125-154. https://doi.org/10.3897/zookeys.1181.108134

Photos by Javier Lobón-Rovira.

Follow ZooKeys on Facebook and X.

Study on mysterious Amazon porcupine can help its protection

After 22 years of relative obscurity, this research uncovers vital information about its distribution, phylogenetics, and potential conservation threats.

Porcupines of the genus Coendou are arboreal, herbivorous, nocturnal rodents distributed in tropical and subtropical regions of the Americas. Most of what we currently know on them is restricted to species that occur near urban areas, and we still have a lot to learn about these fascinating animals.

Recently, a new study shed light on a very unknown neotropical porcupine species. Roosmalens’ dwarf porcupine (Coendou roosmalenorum) is the smallest porcupine species we know, with blackish monocolored bristles on the tail which confers a blackish color to it, but apart from its appearance, we didn’t know much about it until recently.

A preserved specimen of Coendou roosmalenorum.

“This species was described in 2001 and our paper is the first scientific report after this date, which means nothing was discovered about Roosmalen’s porcupine in a 22-year period,” says Fernando Heberson Menezes, the lead author of a study that was just published in the open-access journal ZooKeys.

“Before our research, we had only a morphological description of the species, with a little information about its distribution and natural history, and nothing about population ecology or conservation threats.”

Using DNA sequencing and exploring data on its occurrences, Fernando and his team were able to uncover new facts about the enigmatic animal.

Thanks to their study, we now know more about its distribution in the Madeira biogeographical province in the Amazon Forest. “With this information, we raised the hypothesis this species is endemic to Madeira Province, which is important for predicting where we can find this species and the possible threats affecting its population or its distribution,” says Fernando.

Distribution of Caaporamys roosmalenorum in Brazilian Amazonia. The new record (locality 1) is the southeastern most record for the species, from Mato Grosso state, Brazil. The darker gray area represents the Madeira Province sensu Morrone et al. (2022).

At the same time, they found Roosmalens’ dwarf porcupine at new locations in the Amazon rainforest, which suggests that its distribution in southern Amazonia is wider than suspected.

Their phylogenetic analysis – the study of the species’ evolutionary history and relationships with other species – confirmed that the species is a member of the subgenus Caaporamys . This is important, the researchers say, because the classification of the genus Coendou had been “historically chaotic” until the last few years.

The information in this study opens up numerous opportunities for further researching this species. “We can think of ways to answer very basic scientific questions such as ‘how does Roosmalen’s porcupine use space?’ or ‘what does it eat?’, some more advanced questions such as ‘how did it evolve?,’ or applied questions such as ‘what are the major threats for its conservation?,’ or ‘how can we use it as a model to know more about the health of the Amazon forest?’, says Fernando in conclusion.

Original source:

Menezes FH, Semedo TBF, Saldanha J, Garbino GST, Fernandes-Ferreira H, Cordeiro-Estrela P, da Costa IR (2023) Phylogenetic relationships, distribution, and conservation of Roosmalens’ dwarf porcupine, Coendou roosmalenorum Voss & da Silva, 2001 (Rodentia, Erethizontidae). ZooKeys 1179: 139-155. https://doi.org/10.3897/zookeys.1179.108766

Follow ZooKeys on Facebook and X.

For the first time in 100 years: South American bat rediscovered after a century

The finding increases the range of the species by about 280 km, and highlights the importance of protected areas in the conservation of wildlife.

The Strange Big-eared Brown Bat, Histiotus alienus, was first described by science in 1916, by the British zoologist Oldfield Thomas. The description of the species was based on a single specimen captured in Joinville, Paraná, in southern Brazil.

For more than 100 years, the species had never been captured, being known only by its holotype—the specimen that bears the name, and represents morphological and molecular traits of a species—deposited in The Natural History Museum in London, United Kingdom. Now, after a century, the species has been rediscovered. Scientists Dr Vinícius C. Cláudio, Msc Brunna Almeida, Dr Roberto L.M. Novaes, and Dr Ricardo Moratelli, Fundação Oswaldo Cruz, Brazil and Dr Liliani M. Tiepolo, and Msc Marcos A. Navarro, Universidade Federal do Paraná, Brazil have published details on the sighting in a paper in the open access journal ZooKeys.

During field expeditions of the research project Promasto (Mammals from Campos Gerais National Park and Palmas Grasslands Wildlife Refuge) in 2018, the researchers captured one specimen of big-eared bat at Palmas Grassland Wildlife Refuge.  To catch it, they used mist-nets—equipment employed during the capture of bats and birds—set at the edge of a forest patch. When they compared it to the Tropical Big-eared Brown Bat (Histiotus velatus), commonly captured in the region, they found it was nothing like it.

The unidentified big-eared bat specimen was then collected and deposited at the Museu Nacional in Rio de Janeiro, Brazil, for further studies.

After comparing this puzzling specimen against hundreds of other big-eared brown bats from almost all the species in the genus, the researchers were able to conclusively identify the bat as a Strange Big-eared Brown Bat and confirm its second known record. “Since the description of several the species within the genus is more than one hundred years old and somewhat vague, comparisons and data presented by us will aid the correct identification of big-eared brown bats,” they say.

The Strange Big-eared Brown Bat has oval, enlarged ears that are connected by a very low membrane; general dark brown coloration in both dorsal and ventral fur; and about 100 to 120 mm in total length. This combination of characters most resembles the Southern Big-eared Brown Bat (Histiotus magellanicus), in which the membrane connecting ears is almost absent.

The only known record of the Strange Big-eared Brown Bat until now was from Joinville, Santa Catarina state, southern Brazil, which is about 280 kilometers away from where it was spotted in 2018. So far, the species is known to occur in diverse terrains, from dense rainforests to araucaria and riparian forests and grasslands, at altitudes from sea level to over 1200 m a.s.l.

This increase in the distribution of the species, however, does not represent an improvement on its conservation status: the species is currently classified as Data Deficient by the International Union for the Conservation of Nature. Its habitat, the highly fragmented Atlantic Forest, is currently under pressure from agricultural activity.

But there is still hope: “The new record of H. alienus in Palmas is in a protected area, which indicates that at least one population of the species may be protected,” the researchers write in their study.

Research article:

Cláudio VC, Almeida B, Novaes RLM, Navarro MA, Tiepolo LM, Moratelli R (2023) Rediscovery of Histiotusalienus Thomas, 1916 a century after its description (Chiroptera, Vespertilionidae): distribution extension and redescription. ZooKeys, 1174, 273–287. doi: 10.3897/zookeys.1174.108553

Science in the sunshine: Pensoft’s month of European conferences

Pensoft participated in five conferences across Germany and Italy in September 2023.

For the Pensoft team, September 2023 was a busy and exciting month filled with conferences. Travelling across Europe, they promoted journals, connected with the scientific community, and rewarded exceptional research with free article publications. 

Let’s take a look back at all the events of the past month.

Wildlife Research and Conservation 2023

Wildlife Research and Conservation 2023 took place in Berlin between the 9th and 11th of September. Jointly organised by the Leibniz Institute for Zoo and Wildlife Research, the European Association of Zoos and Aquaria and WWF Germany, it was a fantastic event, featuring an exchange of ideas between wildlife scientists from different disciplines related to mammalian species.

Image showing the WRC2023 logo and two women promoting Pensoft at a conference.
Pensoft representatives Mrs. Boriana Ovcharova and Mrs. Anna Sapundzhieva, ready to greet attendees in the sun.

The conference looked at evolutionary adaptations from the perspective of behavioural ecology, reproduction biology, genetics, physiology, as well as nature conservation. It particularly focused on the pressing issues of wildlife research and species conservation in the context of global environmental change. Most of the ≈100 participants were young scientists from more than 30 countries.

The Pensoft team greeted fellow attendees with an exhibition stand and presented the conservation and ecology-focused journals Neobiota, Nature Conservation, One Ecosystem, and Biodiversity Data Journal. Pensoft also advocated for EuropaBon, who are designing an EU-wide framework for monitoring biodiversity and ecosystem services, and REST-COAST, whose mission is to provide the tools to restore environmental degradation of rivers and coasts. Within both European-funded initiatives, Pensoft is a key dissemination partner that contributes expertise in science communication, scholarly publishing, and the development of digital tools and platforms.

Man holding a certificate.
Joao Pedro Meireles posing with his Best Poster award.

Pensoft presented Joao Pedro Meireles from Utrecht University with the Best Poster Award for his research on pair compatibility in okapis, entitling him to a free publication in one of Pensoft’s open-access journals.

“My study looked at pair compatibility in the zoo breeding programme of Okapi. During breeding introductions, sometimes the male becomes aggressive towards the female and we decided to investigate the potential factors. We ran a survey among all zoos that house the species in Europe and we found that differences in husbandry were linked to the aggressiveness performed by the males.”

Joao Pedro Meireles, Utrecht University

GfÖ Annual Meeting 2023

From the 12th to 16th of September, the German Centre for Integrative Biodiversity Research hosted the 52nd Annual Meeting of the Ecological Society of Germany, Austria and Switzerland in Leipzig, Germany. The meeting welcomed more than 1,100 participants from around the world, including scientists, policymakers, educators, and environmental enthusiasts.

This year’s meeting was held with the theme: “The future of biodiversity – overcoming barriers of taxa, realms and scales.” There was a particular emphasis on future challenges and opportunities facing biodiversity, and how to address and manage these in an interdisciplinary and integrative way. 

Woman standing beside man.
Mrs. Boriana Ovcharova (Pensoft) with Neobiota Editor-in-Chief Prof. Dr. Ingolf Kühn.

Conference participants were welcomed at the Pensoft stand, where they could learn more about the projects EuropaBon and SELINA, which deal with biodiversity, ecosystem and natural capital topics. 

The Pensoft team took great pleasure in talking to attendees about their fantastic journals focused on ecology and biodiversity, including Food and Ecological Systems Modelling Journal, Neobiota, Nature Conservation, One Ecosystem, Vegetation Classification and Survey and Research Ideas and Outcomes, as well as meeting with authors, reviewers and editors.

European Conference on Ecological Modelling

Also in Leipzig, the European Conference on Ecological Modelling took place between the 4th and 8th of September. The event focused on the transformation of how societies deal with natural resources in a world where biodiversity and ecosystem services are at high risk. 

The ECEM 2023 continued a series of conferences launched by the European chapter of ISEM, the International Society for Ecological Modelling. ISEM promotes the international exchange of ideas, scientific results, and general knowledge in the areas of systems’ analysis and simulations in ecology, and the application of ecological modelling for natural resource management.

Pensoft presented its innovative journals in the field of ecology and modelling, such as Nature Conservation, Food and Ecological Systems Modelling Journal and Neobiota, as well as the projects PoshBee and B-GOOD, which aim to help beekeepers and support healthy bee populations where Pensoft acts as the dissemination partner.

The Bundesinstitut für Risikobewertung team presented a poster on the Formal Model format and potential new MiDox formats, unique publication types that can be submitted to Pensoft’s Food and Ecological Modelling Journal.

118th Congress of the Italian Botanical Society

Three men sitting before a projector screen at a conference.
Speakers at the 118th Congress of the Italian Botanical Society.

Pensoft was proud to sponsor the 118th Congress of the Italian Botanical Society, which took place in Pisa, Italy from the 13th to 16th of September. Experts in various fields of Botany gathered to share their research on the following topics:

  • Molecular and cell biology
  • Taxonomy, systematics and evolution
  • Biodiversity
  • Environmental monitoring and policies
  • Biotechnology and applied botany
  • Ecology

Pensoft awarded Emma Cocco, University of Cagliari, and Lucrezia Laccetti, University of Naples Federico II, a free article publication in any of Pensoft’s journals related to botany.  Additionally, Silvia Cannucci, University of Siena, and Flavia Guzzi received the Italian Botanical Society’s support for publishing papers in Italian Botanist for their excellent research.

Four people at a certificate presentation.
Best poster award, presented by Pensoft.

94th Annual Meeting of the Paläontologische Gesellschaft

Finally, between the 18th and 22nd of September, the 94th Annual Meeting of the Paläontologische Gesellschaft was held in Jena, Germany. Pensoft couldn’t make it in person, but still made sure to showcase journals publishing papers in palaeontology, especially Zitteliana and Fossil Record. The international meeting was a great success, and focused on cutting-edge research from palaeobiology, palaeontology, geobiology and related subjects.

Journals promoted by Pensoft at the 94th Annual Meeting of the Paläontologische Gesellschaft.

Summer may be well and truly over, but as a new academic year begins, Pensoft looks forward to attending more conferences, rewarding more incredible research, and connecting with more of the scientific community. Thank you to everyone who contributed to or engaged with Pensoft’s open-access journals this year, and here’s to a successful final quarter of 2023.

***

Follow Pensoft on social media:

Celebrating ZooKeys: 15 years of taxonomic excellence

We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality.

Today, we are thrilled to share with you the celebration of a remarkable milestone in our journey. In July, we marked our 15th birthday – a decade and a half of fostering the free exchange of ideas, data, and knowledge in the vast realm of zoology.

We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality. From the very inception, our goal has been to create a platform where zoological discoveries can shine brightly, accessible to all who share a passion for the wonders of the animal kingdom.

ZooKeys was born out of our collective desire to push the boundaries of scientific publishing, to embrace innovation, and to provide a space where the brightest minds in zoology could come together. Over the years, we have not only achieved this but, thanks to our publisher Pensoft, have also become pioneers in implementing cutting-edge technologies to enhance the way knowledge is shared and absorbed.

ZooKeys was the first of Pensoft’s open-access journals, set up to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. Starting as a taxonomic journal, it quickly expanded to other zoology-related sciences, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics etc… The journal has been thriving since its inception and is currently considered as one of the most prolific and liked Open Access journals in zoology. 

Erwin T, Stoev P, Penev L (2018) ZooKeys anniversary: 10 years of leadership toward open-access publishing of zoological data and establishment at Pensoft of like-minded sister journals across the biodiversity spectrum. ZooKeys 770: 1-8. https://doi.org/10.3897/zookeys.770.28105

One of our proudest achievements was being the first taxonomic journal to introduce semantic tagging and content enhancements, revolutionizing the way information is presented and accessed. This endeavor, which began with our 50th issue in 2010, marked a turning point in scholarly publishing.

The cover of the first issue of ZooKeys.

As of today, we’ve published more than 180,000 pages of research in almost 7,000 articles that have amassed more than 3 million views. Here is a Top 5 of our most popular articles ever:

  • Helgen K, Pinto M, Kays R, Helgen L, Tsuchiya M, Quinn A, Wilson D, Maldonado J (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324: 1-83. https://doi.org/10.3897/zookeys.324.5827, with 80,500 views,
  • Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1-776. https://doi.org/10.3897/zookeys.583.7084 with 69,543 views,
  • Ledford J, Griswold C, Audisio T (2012) An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae, new family). ZooKeys 215: 77-102. https://doi.org/10.3897/zookeys.215.3547 with 65,446 views,
  • Ibrahim N, Sereno PC, Varricchio DJ, Martill DM, Dutheil DB, Unwin DM, Baidder L, Larsson HCE, Zouhri S, Kaoukaya A (2020) Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 928: 1-216. https://doi.org/10.3897/zookeys.928.47517 with 64,456 views,
  • Bouchard P, Bousquet Y, Davies A, Alonso-Zarazaga M, Lawrence J, Lyal C, Newton A, Reid C, Schmitt M, Slipinski A, Smith A (2011) Family-Group Names In Coleoptera (Insecta). ZooKeys 88: 1-972. https://doi.org/10.3897/zookeys.88.807 with 63,524 views.

Our journey would have been incomplete without you – our avid readers and supporters. Your hunger for knowledge, your curiosity, and your unwavering support have been the wind beneath our wings, motivating us to do better, and reinforcing the importance of what we do. As we celebrate our 15th birthday, we extend our deepest gratitude to each one of you who has been a part of our history.

Part of an illustration by Nancy Halliday from the most popular ZooKeys paper to date.

Looking ahead, the future of ZooKeys looks as bright as ever. We are committed to continuing our legacy of innovation, collaboration, and accessibility. Our goal remains steadfast – to be a beacon of knowledge, a platform that fosters discoveries, and a source of inspiration for the next generation of zoological minds.

As we celebrate our 15th anniversary, we are filled with a sense of awe and wonder at the remarkable achievements we have collectively made. Thank you for being a part of this incredible journey. Here’s to the next  15 years and beyond, as we continue to explore, discover, and celebrate the extraordinary diversity of life on Earth.

Jewel of the forest: New electric blue tarantula species discovered in Thailand

The species was previously known on the commercial tarantula market as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat.

In an exciting discovery, a new species of tarantula with electric blue coloration was found in Thailand.

New electric blue tarantula species discovered in Thailand. Photo by Yuranan Nanthaisong

“In 2022, the bamboo culm tarantula was discovered, marking the first known instance of a tarantula species living inside bamboo stalks. Thanks to this discovery, we were inspired to rejoin the team for a fantastic expedition, during which we encountered a captivating new species of electric blue tarantula” researcher Dr. Narin Chomphuphuang said.

Following the announcement of Taksinus bambus in Thailand, he and his research team, along with JoCho Sippawat, a local wildlife YouTuber, embarked on a survey expedition in the Phang-Nga province. During their survey, they not only identified this new tarantula species by its distinctive electric-blue coloration but also discovered its unique natural history. This is the first tarantula species ever found in a Thai mangrove forest.

The Chilobrachys natanicharum electric-blue tarantula exhibits a blue-violet hue resembling the color of electrical sparks. Photo by Yuranan Nanthaisong

“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.

The research team conducting a site area survey recently discovered an electric-blue tarantula near the type locality.  Photo by Narin Chomphuphuang

“The first specimen we found was on a tree in the mangrove forest. Collecting them was challenging due to the muddy and waterlogged ground. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions. During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them,” Narin said.

Catching an electric-blue tarantula is challenging due to the need to climb a tree and lure it out from a complex of hollows with a humid and slippery surface. Photo by Narin Chomphuphuang

“Allow us to introduce our exciting discovery: a new species of tarantula that exhibits a mesmerizing blue-violet hue, reminiscent of electric blue sparks. The secret behind the vivid blue coloration of our tarantula lies not in the presence of blue pigments, but rather in the unique structure of their hair, which incorporates nanostructures that manipulate light to create this striking blue appearance,” Narin said.

Blue is one of the rarest colors to appear in nature, which makes blue coloration in animals particularly fascinating. The scarcity of the color blue in nature can be attributed to the challenges associated with absorbing and reflecting specific wavelengths of light. Blue is difficult to produce in nature because, to appear blue, an object needs to absorb very small amounts of energy while reflecting high-energy blue light. This is challenging, because blue light has shorter wavelengths and higher energy compared to other colors. Generating molecules capable of absorbing this energy is complex, making blue in nature relatively rare. 

Close-up of the font C. natanicharum displaying a blue-violet hue. Photo by Yuranan Nanthaisong

In essence, what we perceive as a blue tarantula is, in fact, a result of how light interacts with the nanostructure-covered hairs on the tarantula’s body, causing some colors to cancel each other out and allowing only blue to be reflected. These biological photonic nanostructures create a remarkable iridescent effect that changes as you alter your viewing angle, making the tarantula even more captivating.

What’s even more fascinating is its ability to not only display blue but also a beautiful violet hue. Violet light occupies only a small portion of the visible light spectrum, and there are very few nanostructures precise enough to exclusively scatter violet light. Moreover, violet wavelengths are even more energetic than blue.

The violet hue of the top view depends on the viewing angle due to the iridescent effect from biological photonic nanostructures. Photo by Yuranan Nanthaisong

In terms of coloration, female and juvenile male C. natanicharum exhibit unique characteristics attributed to the presence of two distinct types of hair. Notably, they possess a more pronounced metallic-blue coloration on various parts of their bodies, while violet hues are predominantly observed in specific areas such as the chelicera, carapace, and certain leg segments. In adult male C. natanicharum, a similar coloration pattern is retained on the chelicera, carapace, and legs, although it appears less intense compared to females. Furthermore, there is a notable shift in coloration on their legs and body, transitioning to white due to the increased density of white setae.

“This species was previously found on the commercial tarantula market. There, it was known as the “Chilobrachys sp. Electric Blue Tarantula” but no documentation existed describing its distinctive features or natural habitat. The exact location where the Electric Blue Tarantula lived remained a mystery until our recent discovery. This has led us to speculate that C. natanicharum may be present in the southern region of Thailand, especially in the remaining forest areas close to where it was found,” Narin said.

The habitat of C. natanicharum includes mangrove forests (left) and highland (right) Photos by Narin Chomphuphuang

According to a study just published in the journal ZooKeys, C. natanicharum exhibits adaptability in inhabiting evergreen and mangrove forests, where tarantulas live inside tree hollows. They can be found at elevations ranging from sea level to highland areas, and live in both arboreal and terrestrial burrows within evergreen forests, at elevations of up to 57 m.

“Unlike our previous discovery, the bamboo culm tarantula, which is specifically associated with bamboo, the electric blue tarantula demonstrates remarkable adaptability. These tarantulas can thrive in arboreal as well as terrestrial burrows in evergreen forests. However, when it comes to mangrove forests, their habitat is restricted to residing inside tree hollows due to the influence of tides, and they cannot be found living terrestrially within mangroves.” Narin said.

Photo by Narin Chomphuphuang

The scientific name of Chilobrachys natanicharum was chosen after an auction campaign for naming the new species. The winner of the auction campaign was Nichada Properties Co., Ltd., Thailand, which suggested a combination of the names of Mr. Natakorn Changrew and Ms. Nichada Changrew, who are company executives.

All proceeds from the auction were donated to support the education of Lahu children in Thailand and poor cancer patients.

“The Lahu people are an indigenous hill tribe in northern Thailand (Musoe) and are known for their vibrant culture and traditional way of life. Unfortunately, many Lahu children are denied access to education due to poverty, leaving them with limited opportunities for their future. The goal is to help change this by providing educational opportunities for Lahu children, giving them a chance to break out of the cycle of poverty. Additionally, cancer remains a significant public health issue globally, affecting millions of people each year. Many cancer patients struggle with financial hardship, which can make accessing quality care even more difficult. We believe that everyone deserves access to quality healthcare, regardless of their financial situation,” the researchers write in their paper.

The proceeds from the auction campaign to choose the scientific name of the new species C. natanicharum were used to support Lahu children in Thailand. Photo by JoCho Sippawat


“We often encounter the question, ‘What are the benefits of studying new species of tarantulas?’ It’s essential for the general public to understand the significance of taxonomy as a fundamental aspect of research. Taxonomy serves a vital role, ranging from the basic, such as when people inquire on social media about the name of a spider, to conducting crucial research aimed at preserving these species from extinction.” Narin said.

These mangrove forest areas serve as the habitat for the electric-blue tarantula C. natanicharum. Photo by Narin Chomphuphuang.

Mangrove forests are invaluable ecosystems offering numerous benefits. However, they face the looming threat of deforestation, which is a destructive process caused by activities such as logging, commercial development, pollution, overfishing, and the impacts of climate change. The electric blue tarantula, the first tarantula species discovered in the mangrove forests of Thailand, is also one of the world’s rarest tarantulas. “When we examine the causes behind the decline of mangrove forests, it becomes apparent that many of these threats are human-induced, both directly and indirectly. This raises a critical question: Are we unintentionally contributing to the destruction of their natural habitats, pushing these unique creatures out of their homes? Or should we advocate for the protection of mangrove forests, not only for the sake of the Electric-Blue Tarantula but also for the preservation of this remarkable jewel of the forest?,” the researchers ask.

Research article:

Chomphuphuang N, Sippawat Z, Sriranan P, Piyatrakulchai P, Songsangchote C (2023) A new electric-blue tarantula species of the genus Chilobrachys Karsh, 1892 from Thailand (Araneae, Mygalomorphae, Theraphosidae). ZooKeys 1180: 105-128. https://doi.org/10.3897/zookeys.1180.106278

Denmark Museum Highlights UW Entomologist’s Naming of Shakira Wasp

Aleiodes shakirae is one of only 18 animal species featured in a museum exhibition in Denmark.

Nine years ago, University of Wyoming entomologist Scott Shaw and colleague Eduardo Shimbori gained a moment of fame by naming several newly discovered South American insect species for celebrities — including a wasp for singer and musician Shakira (Aleiodes shakirae).

Today, the Shakira wasp is one of only 18 animal species featured in a museum exhibition in Denmark. “From Rock Fossils to Pop Insects” at the Naturama Museum in Svendborg, Denmark, highlights species named after famous rock musicians and pop stars, including an ancient mammal for Mick Jagger (Jaggermeryx) and a deep-sea crab named for Metallica (Macrostylis metallicola).

This is the panel in an exhibition at the Naturama Museum in Svendborg, Denmark, that highlights the naming of the Shakira wasp (Aleiodes shakirae) by UW Professor Scott Shaw and colleague Eduardo Shimbori.

The exhibition was planned and created by Thomas Berg, a senior scientist and curator at the museum.

“Discover the fascinating old fossils, listen to the music and find out why scientists use rock music when naming fossils,” says a Naturama website promoting the exhibition, which is open to the public for viewing through November.

The Shakira wasp is a parasite of caterpillars, feeding and developing inside them — and causing them to bend and twist their abdomens in a distinctive way, which reminded Shaw and Shimbori of belly dancing, for which the Colombia-born singer also is famous. The Shakira wasp and other insect species were described in a 2014 volume of the international research journal ZooKeys, which is dedicated to advancing studies of the taxonomy, phylogeny, biogeography and evolution of animals.

“It’s gratifying to see our discovery included in this exhibition in such a creative and artistic way,” Shaw says. “I hope this public attention will help to draw new students to studies of tropical insects and the urgent field of tropical forest conservation.”

Aleiodes shakirae.

Berg says he chose the Shakira wasp for the exhibition because Shakira is a world-class singer and musician — and because of the researchers’ story behind the naming of the insect.

“Shaw and Shimbori’s personal story was captivating, with clear references to the parasitic wasp’s effect on its victim,” Berg says. “I’ll also admit that I’m a huge fan of Shakira, and it was such a gift to have the world’s best argument to include Aleiodes shakirae in the exhibition.”

Shakira. Image by MAURICIO MORENO under a

National Science Foundation-funded fieldwork conducted in the cloud forests of eastern Ecuador by Shaw and colleagues led to the discovery of 24 new species of Aleiodes wasps that mummify caterpillars. Some of these were named for other celebrities, including Jimmy Fallon, Jon Stewart, Stephen Colbert and Ellen DeGeneres. One of these, Aleiodes colberti — named after Colbert — was featured on the Jan. 22, 2022, segment of Colbert’s “Late Show” on CBS.

A UW faculty member since 1989, Shaw is the curator of UW’s Insect Museum in the College of Agriculture, Life Sciences and Natural Resources. He received that college’s Vanvig Lifetime Achievement Award in 2018. He has published more than 200 scientific publications about insects as well as a book, “Planet of the Bugs: Evolution and the Rise of Insects,” which tells of dominant insect species and how they shaped life on Earth.

News piece originally by the University of Wyoming. Republished with permission.