Pensoft is among the first signatories dedicated to fully leveraging biodiversity knowledge from research publications within an open science framework by 2035
Some of the world’s leading institutions, experts and scientific infrastructures relating to biodiversity information are uniting around a new 10-year roadmap to ‘liberate’ data presently trapped in research publications.
The initiative aims to enable the creation of a ‘Libroscope’ – a mechanism for unlocking and linking data from scientific literature to support understanding of biodiversity, as the microscope and telescope previously revolutionized science. The plan largely builds on existing technology and workflows, and does not rely on construction of a new technical infrastructure.
The proposals result from a symposium involving 51 experts from 10 countries held in August 2024 at the 7th-century monastery at Disentis in the Swiss Alps, supported financially by the Arcadia Fund. The symposium was a 10-year follow-up to the 2014 meeting at Meise Botanic Garden in Belgium, which led to the Bouchout Declaration on open biodiversity knowledge management. The Disentis meeting evaluated progress since then, and identified priorities for the decade ahead.
Group photo from the Disentis meeting (Switzerland, August 2024).
While acknowledging major advances in the sharing and use of open biodiversity data, the participants noted that accessing data within research publications is often very cumbersome, with databases disconnected from each other and from the source literature. Liberating and linking data from such publications – estimated to encompass more than 500 million total pages – would represent a compelling mission for the next decade.
A roadmap for staged action over the next decade was agreed by the symposium participants, with the following vision: “By 2035, the power of biodiversity knowledge from research publications will be fully leveraged within an open science framework, including unencumbered data discovery, access, and re-use across scientific disciplines and policy applications.”
The ‘Disentis Roadmap’, further developed following the symposium, and now released publicly, has already been signed by 26 institutions and a further 46 individual experts on five continents – among them major natural history collections such as Meise Botanic Garden, Botanic Garden and Botanical Museum Berlin, the National Museum of Natural History in Paris, and Royal Botanic Gardens, Kew; infrastructures such as the Global Biodiversity Information Facility (GBIF), Biodiversity Heritage Library (BHL), Catalogue of Life, LifeWatch ERIC and the Swiss Institute of Bioinformatics (SIB); journal publishers such as Pensoft Publishers and the European Journal of Taxonomy; research institutions such as Chinese Academy of Sciences and the Senckenberg Society for Nature Research; and networks such as TDWG Biodiversity Information Standards and Consortium of European Taxonomic Facilities (CETAF). See the full list of signatories here.
The roadmap remains open for further signatures, ahead of the launch of an action plan at the Living Data conference in Bogotá, Colombia in October 2025. The original signatories hope that a much broader group of institutions and individuals, across global regions and disciplines, will join the initiative and help to shape implementation of its vision. Engagement of funders will also be critical to realize its objectives.
The specific goals of the roadmap are that by 2035:
All major public biodiversity research funders and academic publishers will encourage and enable publication of data adhering to the FAIR principles (findable, accessible, interoperable and reusable);
Biodiversity-focussed publications will be accessible in machine-actionable formats, with all non-copyrightable parts of articles flowing into public data repositories;
Published research on biodiversity will be ‘fully AI-ready’, that is openly available for AI training and properly labelled for ingestion by machine-learning modelled, within appropriate ethical and legal frameworks;
Dedicated funding from research and infrastructure grants will be reserved for ensuring access to biodiversity data and knowledge.
“We finally have a chance to make a quantum leap in understanding and monitoring biodiversity, by leveraging the power of digital technologies, and combining modern genomic methods with the vast amount of research data published daily and currently stuck in the publication prison. The ‘Libroscope’ will help to explore the universe of existing knowledge, accumulated over hundreds of years, and bring it to the forefront of developments in the digital age, helping nature and people across the globe.”
commented Donat Agosti of the Swiss organization Plazi, who convened the Disentis symposium.
A recent demonstration of the principles of the ‘Libroscope’ was the launch of data portals for the European Journal of Taxonomy (EJT) and the Biodiversity Data Journal, as part of the GBIF hosted portal programme. The new portals showcase the data contained within taxonomic literature published by the journals, making use of the workflow originally developed by Plazi and partners to extract re-usable data from articles traditionally locked in static PDF files. Once created, these data objects then flow into platforms such as GBIF, Catalogue of Life, ChecklistBank and the BiodiversityPMC, and are stored in the Biodiversity Literature Repository at Zenodo hosted by CERN. This process enables data on new species and the location of related specimens cited in the literature to be openly accessible in near-real time, and available for long-term access.
The newly launched Biodiversity Data Journal data portal is part of the GBIF-hosted portal programme. It showcase the data contained within taxonomic literature published by the journal.
“As a publisher of dozens of renowned academic journals in the field of biodiversity and systematics with experience in technology development, at Pensoft, we have always recognised the key role of academic publishers in scholarly communication. It’s not only about publishing the latest research. Above all, it’s about putting scientific work in the hands of those who need it: be it future researchers, policy-makers or their AI-powered assistants. Now that the Disentis roadmap is already a fact, we hope that many others will also join us on this ambitious journey to open up the knowledge we have today for those who will need it tomorrow.”
said Prof. Dr. Lyubomir Penev, founder and CEO at Pensoft, who attended the Disentis symposium.
“By repositioning scientific publications as an essential part of the research cycle, the Disentis Roadmap encourages publishers and the scientific community to move beyond open access towards FAIR access. Proactively ensuring data quality and dissemination is the core mission of the European Journal of Taxonomy. In this way, EJT enhances the immediate discoverability and usability of the taxonomic information it publishes, making it more valuable to the scientific community as a whole. Adherence to the Disentis vision marks a crucial step in the liberation and enrichment of knowledge about biodiversity.”
said Laurence Bénichou, founder and liaison officer of the European Journal of Taxonomy.
The Chief Executive Officer of Meise Botanic Garden, Steven Dessein, who attended the Disentis Symposium, commented:
“Meise Botanic Garden fully supports the Disentis Roadmap, which builds on the foundation laid by the Bouchout Declaration. Open biodiversity data is essential to tackling today’s pressing environmental challenges, from biodiversity loss to climate change. By ensuring research publications become more accessible and interconnected, this roadmap represents a critical step toward harnessing biodiversity knowledge for science, policy, and conservation.”
Christophe Déssimoz, Executive Director of the SIB Swiss Institute of Bioinformatics, another signatory of the Disentis Roadmap, added:
“We have long championed the principles of open, structured, and interoperable data to advance life sciences. The Disentis Roadmap applies these same principles to biodiversity knowledge, ensuring that critical data is not just available, but truly actionable for research, policy, and conservation.”
The director of the Botanic Garden and Botanical Museum of Berlin, Thomas Borsch, noted that more than any other branch of science, taxonomic research depended on the machine-actionable availability of biodiversity data from the literature:
“The ‘Libroscope’ postulated in the Disentis Roadmap will enable a new generation of research workflows through its interoperable approach,” said Professor Borsch. “This will be very helpful to address pressing issues in biodiversity research and in particular to improve the use of quality information on organisms in national and global assessments.”
The chief scientist of the national museum of natural history in Paris (MNHN) said:
“We, like all similar museums and taxonomic institutions, are focussed on linking taxonomic and collection data with digital reproductions and molecular information to create the ‘extended digital specimen.’ However, the potential of taxonomic publications and text mining should not be underestimated either. On the contrary, it is a smart and accessible way to dig into scientific publications so as to retrieve, link and consolidate, research data of great relevance to many disciplines. This is why our institution fully supports the Disentis initiative.”
Christos Arvanitidis, CEO of the Biodiversity and Ecosystem e-Science Infrastructure LifeWatch ERIC, commented:
“LifeWatch ERIC is proud to be part of this initiative, as providing access and support to biodiversity and ecosystem data is fully aligned with our mission. The Disentis Roadmap opens up new opportunities for our research infrastructure to help make what science has provided us accessible and usable, and to improve the FAIRness of data for research and science-based policy.”
Tim Robertson, deputy director and head of informatics at the Global Biodiversity Information Facility (GBIF), who also attended the Disentis meeting added:
“We’re excited to see the results from Disentis partners like Plazi, BHL, Pensoft and the European Journal of Taxonomy who are focussed on liberating data connected with scientific publications,” said . “GBIF will continue to do our part to improve the standards, tools and services that help expand both the benefits and the impact of FAIR and open data on biodiversity science and policy.”
Olaf Bánki, Executive Director of the Catalogue of Life, commented:
“We call out to the scientific community, especially the younger generation, to join our effort in unlocking biodiversity data from literature. Actionable biodiversity and taxonomic data from digitized literature contributes to creating an index of all described organisms of all life on earth. We need such data to tackle and understand the current biodiversity crisis.”
A new species of caddisfly, Tinodes lumbardhi, was found in a sidestream of the Lumbardhi i Deçanit River in Kosovo’s Bjeshkët e Nemuna National Park. The discovery, made by Professor Halil Ibrahimi of the University of Prishtina and his research team, underscores the region’s high biodiversity and urgent need for conservation.
Tinodes lumbardhi, the new species from Lumbardhi i Deçanit River in Kosovo
The aquatic insect is small, with its wings less than 5 mm long. Its name, “lumbardhi,” honors the local Albanian name for the river, meaning “the white river.”
“The discovery of Tinodes lumbardhi is both a celebration of Kosovo’s unique natural heritage and a wake-up call for conservation,” said Professor Halil Ibrahimi. “The survival of these species depends on our ability to protect their fragile habitats.”
The type locality of Tinodes lumbardhi, a shelter for several other rare species of caddisflies.
Hosting several rare and endemic species, Bjeshkët e Nemuna, a mountainous region in western Kosovo, is a hotspot for caddisfly diversity. Despite this richness, however, Kosovo’s freshwater ecosystems face escalating threats from human activities. Hydropower development, pollution, and water extraction have severely degraded habitats like the Lumbardhi i Deçanit River, leading in some areas to impoverished insect communities and an alarming absence of fish. Sidestreams like the one where T. lumbardhi was found serve as critical refuges for rare species but remain vulnerable to environmental pressures.
Caddisflies, known for their sensitivity to environmental changes, are key bioindicators of freshwater ecosystem health. These small insects are not only vital for biodiversity but also for maintaining ecological stability in the face of threats such as climate change and habitat destruction.
Heavy environmental pressures endanger the aquatic fauna of Lumbardhi i Deçanit River in Kosovo.
Kosovo’s caddisfly fauna has seen significant advancements in recent years, with contributions from Ibrahimi and his team shedding light on the region’s ecological treasures. Their work has revealed species such as Potamophylax kosovaensis and Potamophylax coronavirus, emphasizing the importance of ongoing research and conservation efforts.
The discovery of Tinodes lumbardhi adds to the growing recognition of Bjeshkët e Nemuna as a biodiversity hotspot of international significance. In their research paper, published in Biodiversity Data Journal, the researchers call for urgent targeted conservation measures to mitigate the impacts of hydropower development and other anthropogenic threats in the region. “Protecting these rare species and their habitats is not only a moral imperative but also a crucial step toward sustaining the ecological integrity of Kosovo’s freshwater systems,” says Halil Ibrahimi in conclusion.
Original source:
Ibrahimi H, Bilalli A, Musliu M, Geci D, Grapci Kotori L (2025) Tinodes lumbardhi sp. nov. (Trichoptera, Psychomyiidae), a new species from the Lumbardhi i Deçanit River in Kosovo. Biodiversity Data Journal 13: e143104. https://doi.org/10.3897/BDJ.13.e143104
If you follow any of Pensoft’s social media accounts, you will know that we have been counting down our top 10 favourite species described as new-to-science in our journals this year.
The list is—of course—entirely arbitrary, but it is also a fun way to look back on a year in which several weird and wonderful animals, plants and fungi were discovered.
In this blog post, we will tell you more about each species, share some honourable mentions, and reveal our number 1 spot!
Honourable mentions
The league of legends crab
Gothus teemo and Teemo.
When it was time to name a tiny, ‘furry’ new species of gorilla crab from China, researchers drew unlikely inspiration from the video game League of Legends.
Gothus teemo was named after the character Teemo thanks to its distinctive appearance and has drawn a lot of attention from fans of the franchise.
The new species is thought to have resembled a modern sandtiger shark (pictured).
Calling anything on this list a ‘new species’ is not accurate—rather, they are just new to published science. Nothing exemplifies this more than Palaeohypotodus bizzocoi, a long-extinct shark species that lived 65 million years ago, shortly after the fall of the dinosaurs.
What makes this discovery remarkable is that it was partially accidental. Find out how a 100-year-old box of teeth in Alabama led to the discovery of this ancient shark below.
Sometimes, it is the way in which a new species is discovered that makes it so special.
Such is the case for Schiedea waiahuluensis, a carnation species from Hawaii that is likely the first plant to be identified and collected using drone technology. Learn all about it below!
With its all-black colouration, Tylototriton gaowangjienensis, a crocodile newt from China, has drawn comparisons to Toothless from How to Train Your Dragon.
However, this alluring amphibian hides flashes of orange beneath its tail and toes! Find more pictures and information below.
Besides its adorable appearance, Hoplitis onosmaevae is remarkable due to its distribution. It is currently only known from a small region of the French Alps, and areas >2,000 km away in the mountains of Turkey and Iraq.
Another interesting aspect of Hoplitis onosmaevae is its specialised ecological niche: it is thought to only collect pollen from Onosma species. This narrow ecological niche makes it vulnerable to factors like climate change and changes in agricultural practices.
John L. Clark with Amalophyllon miraculum. Credit @phinaea on Instagram.
The discovery of Amalophyllon miraculum—in an area assumed to be a barren agricultural landscape of plant extinctions—represents an inspiration for biodiversity conservation. This “miracle” plant, as its name suggests, was found surviving in one of the small, isolated forest fragments that remain in the Centinela region of western Ecuador.
This spiky amphibian was discovered on Cerro Candelaria, a mountain in the Tungurahua province. The discovery of this new species in the upper Rio Pastaza watershed suggests this area might be a centre of rapid evolution for these fascinating frogs.
Entomologists and citizen scientists teamed up to discover this new species of flea beetle in the lush rainforests of Borneo. The discovery was made during a Taxon Expeditions trip, where non-scientist people got the chance to work alongside scientists to identify and describe new species.
What makes this discovery particularly exciting is the beetle’s size—it’s actually one of the largest among its relatives! Flea beetles that live in the leaf litter of tropical forests are typically much smaller, and as a result, we know very little about their ecology and diversity.
Discovered in the Red Sea, the ‘grumpy dwarf goby’ (Sueviota aethon) was published as a new species in ZooKeys. You can probably guess how it earned its name! This tiny fish, measuring less than 2 centimetres long, sports a permanent frown thanks to its large canines and fierce expression. Despite its small size, the grumpy dwarfgoby is thought to be a fearsome predator in its coral reef habitat.
Thismia malayanais a mycoheterotrophic plant, meaning it doesn’t photosynthesise. Instead, it acts as a parasite, stealing carbon resources from the fungi on its roots!
By stealing nutrients from fungi, it can thrive in the low-light conditions of dense forest understories where its highly specialised flowers are pollinated by fungus gnats and other small insects.
While the Tiputini velvet worm—Oroperipatus tiputini—may look friendly, it is an accomplished hunter that shoots a sticky substance from a pair of glands to trap its prey. This “living fossil” is a rare and unique invertebrate that evolved over 500 million years ago. The new species was discovered in the Ecuadorian Amazon at the Tiputini Biodiversity Station, which is part of the Yasuní Biosphere Reserve.
They say that life imitates art, and this new gecko species proves that to be true! Researchers in India have discovered a gecko with such a unique and beautiful colouration that they named it after painter Vincent van Gogh. The “Starry Night” gecko, or Cnemaspis vangoghi, was discovered in the Southern Western Ghats and stands out due to the male’s yellow head and forebody with light blue spots on the back, a striking combination reminiscent of the famous painting.
Yet another hectic year has passed for our team at Pensoft, so it feels right to look back at the highlights from the last 12 months, as we buckle up for the leaps and strides in 2025.
In the past, we have used the occasion to take you back to the best moments of our most popular journals (see this list of 2023 highlights from ZooKeys, MycoKeys, PhytoKeys and more!); share milestones related to our ARPHA publishing platform (see the new journals, integrations and features from 2023); or let you reminisce about the coolest research published across our journals during the year(check out our Top 10 new species from 2021).
In 2022, when we celebrated our 30th anniversary on the academic scene, we extended our festive spirit throughout the year as we dived deep into those fantastic three decades. We put up Pensoft’s timeline and finished the year with a New Species Showdown tournament, where our followers on (what was back then) Twitter voted twice a week for their favourite species EVER described on the pages of our taxonomic journals.
Spoiler alert: we will be releasing our 2024 Top 10 New Species on Monday, 23 December, so you’d better go to the right of this screen and subscribe to our blog!
As we realised we might’ve been a bit biased towards our publishing activities over the years, this time, hereby, we chose to present you a retrospection that captures our best 2024 moments from across the departments, and shed light on how the publishing, technology and project communication endeavours fit together to make Pensoft what it is.
In truth, we take pride in being an exponentially growing family of multiple departments that currently comprises over 60 full-time employees and about a dozen freelancers working from all corners of the world, including Australia, Canada, Belgium and the United Kingdom. Together, we are all determined to make sure we continuously improve our service to all who have trusted us: authors, reviewers, editors, client journals, learned societies, research institutions, project consortia and other external collaborators.
After all, great deeds are only possible when you team up with great like-minded people!
In 2024, at Pensoft, we were hugely pleased to see a significant growth in the published output at almost all our journals, including record-breaking numbers in both submissions and publications at flagship titles of ours, including the Biodiversity Data Journal, PhytoKeys and MycoKeys.
Later in 2024, our colleagues, who work together with our clients to ensure their journals comply with the requirements of the top scholarly databases before they apply for indexation, informed us that another two journals in our portfolio have had their applications to Clarivate’s Web of Science successfully accepted. These are the newest journal of the International Association of Vegetation Science: Vegetation and Classification, and Metabarcoding and Metagenomics: a journal we launched in 2017 in collaboration with a team of brilliant scientists working together at the time within the DNAquaNet COST Action.
In 2024, we also joined the celebrations of our long-time partners at the Museum für Naturkunde Berlin, whose three journals: Zoosystematics and Evolution, Deutsche Entomologische Zeitschrift and Fossil Record are all part of our journal portfolio. This year marked the 10th Open Access anniversary of the three journals.
In the meantime, we also registered a record in new titles either joining the Pensoft portfolio or opting for ARPHA Platform’s white-label publishing solution, where journal owners retain exclusivity for the publication of their titles, yet use ARPHA’s end-to-end technology and as many human-provided services as necessary.
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev with Prof. Dr. Marc Stadler, Editor-in-Chief of IMA Fungus and President of the International Mycological Association at the Pensoft booth at the 12th International Mycological Congress (August, the Netherlands).
Amongst our new partners are the International Mycological Association who moved their official journal IMA Fungus to ARPHA Platform. As part of Pensoft’s scholarly portfolio, the renowned journal joins another well-known academic title in the field of mycology: MycoKeys, which was launched by Pensoft in 2011. The big announcement was aptly made public at this year’s 12th International Mycological Congress where visitors of the Pensoft stand could often spot newly elected IMA President and IMA Fungus Chief editor: Marc Stadler chatting with our founder and CEO Lyubomir Penev by the Pensoft/MycoKeys booth.
On our end, we did not stop supporting enthusiastic and proactive scientists in their attempt to bridge gaps in scientific knowledge. In January, we launched the Estuarine Management and Technologies journal together with Dr. Soufiane Haddout of the Ibn Tofail University, Morocco.
Later on, Dr. Franco Andreone (Museo Regionale di Scienze Naturali, Italy) sought us with the idea to launch a journal addressing the role of natural history museums and herbaria collections in scientific progress. This collaboration resulted in the Natural History Collections and Museomics journal, officially announced at the joint TDWG-SPNHC conference in Okinawa, Japan in August.
Around this time, we finalised our similarly exciting journal project in partnership with Prof. Dr. Volker Grimm (UFZ, Germany), Prof. Dr. Karin Frank (UFZ, Germany), Prof. Dr. Mark E. Hauber (City University of New York) and Prof. Dr. Florian Jeltsch (University of Potsdam, Germany). The outcome of this collaboration is called Individual-based Ecology: a journal that aims to promote an individual-based perspective in ecology, as it closes the knowledge gap between individual-level responses and broader ecological patterns.
The three newly-launched journals are all published under the Diamond Open Access model, where neither access, nor publication is subject to charges.
As you can see, we have a lot to be proud of in terms of our journals. This is also why in 2024 our team took a record number of trips to attend major scientific events, where we got the chance to meet face-to-face with long-time editors, authors, reviewers and readers of our journals. Even more exciting was meeting the new faces of scientific research and learning about their own take on scholarship and academic journals.
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev welcomed editors at PhytoKeys to the Pensoft-PhytoKeys-branded booth at the XX International Botanical Congress in July 2024 (Spain).
We cannot possibly comment on Pensoft’s tech progress in 2024 without mentioning the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library) that we coordinated for three years ending up last April.
This 36-month endeavour saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields.
Following these three years of collaborative work, we reported a great many notable research outputs from our consortium (find about them in the open-science project collection in the Research Ideas and Outcomes journal, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective”) that culminated in the Biodiversity Knowledge Hub: a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks; and also a set of policy recommendations addressing key policy makers, research institutions and funders who deal with various types of data about the world’s biodiversity, and are thereby responsible to ensuring there findability, accessibility, interoperability and reusability (FAIR-ness).
Apart from coordinating BiCIKL, we also worked side-by-side with our partners to develop, refine and test each other’s tools and services, in order to make sure that they communicate efficiently with each other, thereby aligning with the principles of FAIR data and the needs of the scientific community in the long run.
During those three years we made a lot of refinements to our OpenBiodiv: a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System, and our ARPHA Writing Tool. The latter is an XML-based online authoring environment using a large set of pre-formatted templates, where manuscripts are collaboratively written, edited and submitted to participating journals published on ARPHA Platform. What makes the tool particularly special is its multiple features that streamline and FAIRify data publishing as part of a scientific publication, especially in the field of biodiversity knowledge. In fact, we made enough improvements to the ARPHA Writing Tool that we will be soon officially releasing its 2.0 version!
OpenBiodiv – The Open Biodiversity Knowledge Management System
ARPHA Writing Tool 2.0
Amongst our collaborative projects are the Nanopublications for Biodiversity workflow that we co-developed with KnowledgePixels to allow researchers to ‘fragment’ their most important scientific findings into machine-actionable and machine-interpretable statements. Being the smallest units of publishable information, these ‘pixels of knowledge’ present an assertion about anything that can be uniquely identified and attributed to its author and serve to communicate a single statement, its original source (provenance) and citation record (publication info).
Nanopublications for Biodiversity
In partnership with the Swiss-based Text Mining group of Patrick Ruch at SIB and the text- and data-mining association Plazi, we brought the SIB Literature Services (SIBiLS) database one step closer to solidifying its “Biodiversity PMC” portal and working title.
Understandably, we spent a lot of effort, time and enthusiasm in raising awareness about our most recent innovations, in addition to our long-standing workflows, formats and tools developed with the aim to facilitate open and efficient access to scientific data; and their integration into published scholarly work, as well as receiving well-deserved recognition for their collection.
We just can’t stress it enough how important and beneficial it is for everyone to have high-quality FAIR data, ideally made available within a formal scientific publication!
🗨️Imagine if ALL these links were provided as hyperlinks within a #scholarly publication!
Pensoft’s CTO Teodor Georgiev talks about innovative methods and good practices in the publication of biodiversity data in scholarly papers at the First national meeting of the Bulgarian Barcode of Life (BgBOL) consortium (December, Bulgaria).
🤔What is a Data Paper?
👍 A means to describe a #dataset – like the ones on @GBIF – in a standardised, widely accepted #scientific article format.
👇🧵Highlights from @LyuboPenev's talk at the int'l symposium "#BiodiversityData in montane & arid Eurasia" in Kazakhstan 🇰🇿
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev presenting his “Data papers on biodiversity” talk at the “Biodiversity data in montane and arid Eurasia” symposium jointly organized by GBIF and by the Institute of Zoology of Republic of Kazakhstan (November, Kazakhstan).
.
📸Today, at the @EASEeditors symposium, our @teodorpensoft gave a sneak peek into the AI-assisted tools at @ARPHAplatform we have been working on (e.g. Word -> JATS XML conversion) and the #ARPHA Writing Tool 2.0 (coming up in early 2025)!🎉
Pensoft’s CTO Teodor Georgiev presents new features and workflows currently in testing at the ARPHA Writing Tool 2.0 at the EASE Autumn Symposium 2024 (online event).Pensoft’s Head of Journal development, Marketing and PR Iva Boyadzhieva talks about Pensoft’s data publishing approach and innovations at the German Ecological Society 53rd Annual Conference (September, Germany).
Pensoft as a science communicator
At our Project team, which is undoubtedly the fastest developing department at Pensoft, science communicators are working closely with technology and publishing teams to help consortia bring their scientific results closer to policy actors, decision-makers and the society at large.
Ultimately, bridging the notorious chasm between researchers and global politics boils down to mutual understanding and dialogue.
Pensoft’s communication team attended COP16 (November 2024, Colombia) along with partners at the consortia of CO-OP4CBD, BioAgora and RESPIN: three Horizon Europe projects, whose communication and dissemination is led by Pensoft.
Throughout 2024, the team, comprising 20 science communicators and project managers, has been working as part of 27 EU-funded project consortia, including nine that have only started this year (check out all partnering projects on the Pensoft website, ordered from most recently started to oldest). Apart from communicating key outcomes and activities during the duration of the projects, at many of the projects, our team has also been actively involved in their grant proposal drafting, coordination, administration, platform development, graphic and web design and others (see all project services offered by Pensoft to consortia).
📸As leaders of the “Stakeholder engagement, comms & dissemination” WP at @BCubedProject, we joined the annual meeting to report on project branding, #scicomm & #DataManagement.
Naturally, we had a seat on the front row during many milestones achieved by our partners at all those 27 ongoing projects, and communicated to the public by our communicators.
Amongst those are the release of the InsectsCount web application developed within the Horizon 2020 project SHOWCASE. Through innovative gamification elements, the app encourages users to share valuable data about flower-visiting insects, which in turn help researchers gain new knowledge about the relationship between observed species and the region’s land use and management practices (learn more about InsectsCount on the SHOWCASE prroject website).
Another fantastic project output was the long-awaited dataset of maps of annual forest disturbances across 38 European countries derived from the Landsat satellite data archive published by the Horizon Europe project ForestPaths in April (find more about the European Forest Disturbance Atlas on the ForestPaths project website).
In a major company highlight, last month, our project team participated in COP29 in Baku, Azerbaijan with a side event dedicated to the role of open science and science communication in climate- and biodiversity-friendly policy.
Pensoft’s participation at COP29 – as well as our perspective on FAIR data and open science – were recently covered in an interview by Exposed by CMD (a US-based news media accredited to cover the event) with our science communicator Alexandra Korcheva and project manager Boris Barov.
You see, A LOT of great things worth celebrating happened during the year for us at Pensoft: all thanks to ceaselessly flourishing collaboration based on transparency, trust and integrity. Huge ‘THANK YOU!’ goes to everyone who has joined us in our endeavours!
Here’s to many more shared achievements coming up in 2025!
***
Now, to keep up with our next steps in real time, we invite you to follow Pensoft on social media on BlueSky,X,Facebook,InstagramandLinkedin!
Don’t forget to also enter your email to the right to sign up for new content from this blog!
The first national symposium on DNA barcoding took place on 5 December 2025 at the Headquarters of the Bulgarian Academy of Sciences, where it was attended by renowned Bulgarian scientists in the field, in addition to early-career researchers and PhD students representing different institutions.
The event saw a day-long series of lectures and a poster session, during which the participants had the opportunity to get acquainted with the work of their colleagues in various fields of biology.
Amongst the topics were the development of the Bulgarian molecular laboratory in Antarctica; the study of the invertebrate fauna currently underrepresented in DNA reference libraries; the return of the beaver to Bulgaria; and research on phytopathogenic fungi on agricultural crops.
During the coffee breaks sponsored by the National Museum of Natural History, the delegates had the chance to network and exchange experience between institutions and fields of expertise.
Teodor Georgiev, CTO at Pensoft held a presentation about the 2.0 version of the ARPHA Writing Tool. In its greatly improved version, it will feature many new, refined and elaborated workflows that help and simplify data publishing, discoverability, reusability and overall FAIRness.
🗨️Imagine if ALL these links were provided as hyperlinks within a #scholarly publication!
The event was opened and closed by Prof. Dr. Lyubomir Penev, who was elected as the Chair of the Governing Board at the Bulgarian Barcode of Life last year. He is also the founder and CEO of Pensoft.
In his closing speech, Penev expressed his hopes for the development of BgBOL and confirmed the plans of the consortium to turn the symposium into an annual tradition. Congratulations were extended to BgBOL’s newest member: the Institute of Oceanology “Fridtjof Nansen” at BAS.
He also announced the launch of a new special collection in the Biodiversity Data Journal, which will welcome scientific papers related to the Bulgarian and Balkan biota and using DNA barcoding methods. The authors of the first five papers to be submitted and accepted at the collection will take advantage of free publication.
Finally, he thanked the hosts of the Bulgarian Academy of Sciences Headquarters: Stefania Kamenova and Assoc. Prof. Dr. Georgi Bonchev, who are also Vice-Chair and Chair of the Executive Board at BgBOL, respectively. A special thanks went also to Prof. Pavel Stoev, Director of the National Museum of Natural History.
All available information on Enchodelus species is brought together. This will contribute to a more complete assessment of species diversity and distribution.
Guest blog post by Milka Elshishka and Vlada Peneva
The order Dorylaimida is the most diverse nematode group, with over 2640 valid species and more than 260 valid genera, with new taxa being described each year. They are the richest nematode order in number of species in natural soils. Dorylaims are often regarded as good environmental bio-indicators since the number of species/specimens drastically decreases following any significant disturbance in their habitat.
In our study, published in the Biodiversity Data Journal, we examined one intriguing free-living dorylaimid nematode taxon: the genus Enchodelus which is considered to have conservation value. The genus currently includes 28 species, which display a distinct distributional pattern, being spread mainly in high altitudinal enclaves of the Northern Hemisphere (with the exception of E. brasiliensis, only known to occur in Brazil). Its representatives are often associated with mosses and cliff vegetation. Although their feeding habits have not been studied with experimental protocols, it is traditionally assumed that they are omnivorous.
Distribution of Enchodelus species
The genus Enchodelus has not been recently revised; the descriptions of many ‘old species’ (that have been described long ago and have not been reported since their original discovery) are of poor quality, hardly discoverable, and do not conform to today’s taxonomical standards.
An Enchodelus species.
Actually, information available from databases often is limited to some of the species and usually incomplete as relevant data are missing. Consequently, a comprehensive compilation and analysis of literature data is indispensable to reach new insights into the taxonomy of the genus and to elucidate its evolutionary relationships.
Our work provides a cyber catalogue of Enchodelus species, where all available data for the species are accessible and collected in one place, which will greatly facilitate future research. It compiles available information from key European Research Infrastructures, such as TreatmentBank, the Swiss Institute of Bioinformatics Literature Services (SIBiLS), the Catalogue of Life (CoL), the Global Biodiversity Information Facility (GBIF), the European Nucleotide Archive (ENA) and the Biodiversity Literature Repository (BLR). Data about their distribution (geographical records and habitats) are incorporated too and all brought together. It is completed with discussion and notes for some species, along with information on species distributions and microhabitats.
Here, all available information on Enchodelus species is brought together. This will contribute to a more complete assessment of species diversity and distribution and support further biogeographical and ecological research.
The type species Enchodelus macrodorus is the most widely spread and reported Enchodelus species. It is a typical member of Palearctic nematode fauna, recorded in a myriad of countries and habitats and very sporadically recorded in Nearctic and Indomalayan enclaves. In our study we add new morphological and molecular data for this species collected from Spain.
Enchodelus macrodorus from Spain.
Additionally, type material of Enchodelus vestibulifer, belonging to Edmond Altherr’s collection, deposited at the Museo Cantonale di StoriaNaturale di Lugano (Switzerland), is re-examined.
Enchodelus vestibulifer
This species was described by the Swiss nematologist Edmond Altherr in 1952 on the basis of a single female from Switzerland and no later record of it exists. The re-examination of this material revealed that several relevant traits are not compatible with those characterising the genus Enchodelus and we considered it as incertae sedis.
In our study we also present one new species, Enchodelus enguriensis. It was collected from moss on stone (Tortellasquarrosa) in Caucasus, Georgia (Samegrelo-Zemo Svaneti Region, Bogreshi, Enguri River, Tower of Love). The description of the new species was supported by a comprehensive phylogenetic analysis based on D2-D3 of 28S rRNA. When naming the new taxon, we selected the name of the place from which the material was collected, namely the River Enguri; it was recovered from the stone next to the Tower of Love on the bank of the river.
Enchodelus enguriensis
We are grateful for the support the BiCIKL project, Grant No 101007492.
Research article:
Elshishka M, Mladenov A, Altash S, Álvarez-Ortega S, Peña-Santiago R, Peneva V (2024) Cyber catalogue and revision of the nematode genus Enchodelus (Dorylaimida, Nordiidae). Biodiversity Data Journal 12: e126315. https://doi.org/10.3897/BDJ.12.e126315
In a world increasingly defined by data-driven decisions, biodiversity research stands to benefit from standardized and accessible data. Despite their importance for research, biodiversity datasets often fail to meet FAIR (Findable, Accessible, Interoperable, Reusable) standards, leading to concerns about data quality, reliability, and accessibility.
To address this, we propose a framework to retrieve, refine and align secondary biodiversity data with FAIR standards, utilizing the Darwin Core model. We followed four steps:
data localization (systematic review)
quality validation
standardization using the Darwin Core standard
sharing and archive in the appropriate repository.
Our approach integrates data validation and quality control steps to ensure that secondary data sets can be trusted.
Our study in Biodiversity Data Journalfocused on ecotonal estuarine ecosystems near the easternmost Amazon, where we recovered data from 46,000 individuals representing 3,871 taxa across eight biotic groups (birds, amphibians, reptiles, mammals, fish, phytoplankton, benthos, and plants) from 1985 to 2022. These data were used to illustrate how our strategy improves validation, making the data more reliable for macroecological modeling and conservation management. As data becomes more standardized, researchers around the world will be better equipped to collaborate, identify trends, protect ecosystems, and advance sustainability efforts.
Relationships between numbers of taxa and occurrences gathered through an extensive review of secondary biodiversity data from the Golfão Maranhense area, in the estuarine regions of eastern Amazonia.
Accessible biodiversity data empowers stakeholders and provides critical insights into ecosystem health and species conservation. However, without standardized formats, this data is often fragmented, incomplete, or difficult to compare. By creating a consistent framework for collecting, storing, and sharing data, we are opening the door to more informed decision-making and innovation in biodiversity conservation.
The key to conserving biodiversity is collaboration and transparency. By prioritizing accessible and standardized data, we ensure that vital information reaches those who need it most – whether it’s for scientific study, habitat management or policymaking.
Let’s continue to make biodiversity data a tool for global change!
Research article:
Marques N, Soares CDdeM, Casali DdeM, Guimarães E, Fava F, Abreu JMdaS, Moras L, Silva LGda, Matias R, Assis RLde, Fraga R, Almeida S, Lopes V, Oliveira V, Missagia R, Carvalho E, Carneiro N, Alves R, Souza-Filho P, Oliveira G, Miranda M, Tavares VdaC (2024) Retrieving biodiversity data from multiple sources: making secondary data standardised and accessible. Biodiversity Data Journal 12: e133775. https://doi.org/10.3897/BDJ.12.e133775
It is nothing new that our planet is facing a number of serious threats: climate change, biodiversity loss, pandemics… If you have been watching the news, all this is probably familiar to you. The wealth of data hosted in Natural history collections can contribute to finding a response to these challenges.Alas, today’s practices of working with collected bio- and geodiversity specimens lack some efficiency, thus limiting what our scientists can achieve.
In particular, there is a rather serious absence of linkages between specimen data. Sure, each specimen in a collection usually has its own catalogue ID that is unique within that collection, but the moment collections attempt to work with other collections -as they should in the face of planetary threats- problems start to arise because usually, each collection has its own way of identifying their data, thus leading to confusion.
Persistent identifiers: the DOIs
To avoid this problem, several initiatives have been launched in recent years to establish a globally accepted system of persistent identifiers (PIDs) that guarantee the “uniqueness” of collection specimens—physical or digital—over time.
Digital specimen DOIs can point to individual specimens in a collections.
You can think of a PID as a marker, an identifier that points at a single individual object and only one, differentiating it from any other in the world. You must have heard of acronyms such as ISBN or ORCID. Those are PIDs for books and individual scholars, respectively. For digital research content, the most widely used PID is the DOI (Digital Object Identifier), proposed by the DOI Foundation.
A DOI is an alphanumeric code that looks like this: 10.prefix/sufix
For example, if you type https://doi.org/10.15468/w6ubjx in your browser, you will reach the Royal Belgian Institute of Natural Sciences’s mollusk collection database, accessed through GBIF. This specific DOI will never point at anything else, and the identifier will remain the same in the future, even if changes occur in the content of this particular database.
DiSSCo and the DOIs
The Distributed System of Scientific Collections (DiSSCo) aims to provide a DOI for all individual digital specimens in European natural history collections. The point is not only to accurately identify specimens. That is, of course, crucial, but the DOI of a digital specimen provides a number of other advantages that are extremely interesting for DiSSCo and natural history collections in general. Among them, two are simply revolutionary.
The digital specimen DOI stores quick-access, basic metadata about the specimen.
Firstly, using DOIs allows linking the digital specimen to all other relevant information about the same specimen that might be hosted in other repositories (e.g. ecological data, genomic data, etc.). In creating this extended digital specimen that links different data types, digital specimen DOIs make a huge contribution to inter-institutional scientific work, filling the gap that is described at the beginning of this piece. Now scientists will be in a much better position to really exchange and link data across institutions.
Second, in contrast to most other persistent identifiers, the DOI of a digital specimen stores additional metadata (e.g. name, catalogue number) beyond the URL to which it redirects. This allows access to some information about the specimen without having to retrieve the full data object, i.e. without having to be redirected to the specimen HTML page. This metadata facilitates AI systems to quickly navigate billions of digital specimens and perform different automated work on them, saving us (humans) precious time.
Use of DOIs in publications
With all this in mind, it is easier to understand why being able to cite digital specimens in scholarly publications using DOIs is an important step. So far, the only DOIs that we could use in publications were those at the dataset level, not at the individual specimen level. In the example above, if a scientist were to publish an article about a specific type of bivalve in the Belgian collection, the only DOI that she or he would have available for citation in the article would be that of the entire mollusk database -containing hundreds or thousands of specimens- not the one of the specific oyster or scallop that might be the focus of the publication.
Main page of DiSSCo’s sandbox, the future DiSSCover service.
The publication in Biodiversity Data Journalabout the Chrysilla and Phintelloides genera is the first of its kind and opens the door to citing not only dataset-level objects but also individual specimens in publications using DOIs. You can try it yourself: Hover over the DOIs that are cited in the publication and you will get some basic information that might save you the time of visiting the page of the institution where the specimen is. Click on it and you will be taken to DiSSCo’s sandbox -the future DiSSCover service- where you will find all the information about the digital specimen. There you will also be able to comment, annotate the specimen, and more, thus making science in a more dynamic and efficient way than until now.
A note about Christa Deeleman-Reinhold
At 94 years old, the Dutch arachnologist Christa Deeleman-Reinhold is not only one of the authors of the Chrysilla and Phintelloides article but also one of the most important arachnologists in the world. Born in 1930 on the island of Java -then part of the Dutch East Indies- Christa gained her PhD from Leiden University in 1978. Since then, she has developed a one-of-a-kind scientific career, mainly focused on spider species from South Asia. In her Forest Spiders of South East Asia (2001), Dr. Deeleman-Reinhold revised six spider families, describing 18 new genera and 115 new species. The Naturalis Biodiversity Center hosts the Christa Laetitia Deeleman-Reinhold collection, with more than 20,000 specimens.
Text and images provided by DiSSCo RI.
Research article:
Deeleman-Reinhold CL, Addink W, Miller JA (2024) The genera Chrysilla and Phintelloides revisited with the description of a new species (Araneae, Salticidae) using digital specimen DOIs and nanopublications. Biodiversity Data Journal 12: e129438. https://doi.org/10.3897/BDJ.12.e129438
The International Congress of Entomology 2024 (ICE2024), which took place on August 25-30 2024 in Kyoto, Japan, was arguably the biggest entomology event of the year. For the Pensoft team, it was an excellent chance to catch up with our authors and editors and discuss new partnerships.
At the Kyoto International Conference Center, entomologists visited lectures, symposia, and poster presentations, but they also enjoyed insect-themed haikus, origami, and artworks, and got to sample some edible insects.
— International Congress of Entomology 2024 Kyoto JP (@ice2024kyoto_jp) August 27, 2024
Meeting our authors in person was a chance for us to gather valuable feedback and make sure we are doing our best to provide entomologists with a frictionless process that makes their published research shine.
Robin Kundrata, author in ZooKeys
Deepa Pureswaran, author and editor in NeoBiota
Alain Roques, author and editor in NeoBiota
Jessica Gillung, author in ZooKeys
Ranjith AP, editor in Check List and author in ZooKeys and Journal of Hymenoptera Research
Scientific illustrator Denitsa Peneva’s beautiful works adorned Pensoft’s stand; Mostafa Ghafouri Moghaddam, subject editor at ZooKeys and Biodiversity Data Journal and author at a number of Pensoft-published journals even got to take one of her prints home after winning a raffle that Pensoft organised. He won a beautiful illustration of Bombus fragrans on Trifolium pratense.
Pensoft’s founder and CEO and one of the founding editors of the company’s flagship journal ZooKeys, Prof. Lyubomir Penev, was there representing the company and meeting with fellow entomologists.
Prof. Penev with Evgeny Zakharov of the Centre for Biodiversity Genomics
Prof. Penev with researchers Jadranka Rota, Niklas Wahlberg, Alexander Konstantinov, and Michael Schmidt
Prof. Penev with researcher Caroline S. Chaboo
They also got the chance to learn about the ARPHA Platform, a next-generation publishing solution that offers a streamlined and efficient workflow for authors, reviewers, and editors.
At ICE2024, Pensoft also presented its newest open-access jorunal, Natural History Collections and Museomics. A peer-reviewed journal for research, discussion and innovation of natural history collections, NHCM will publish under a diamond open access model, allowing free access to published content without any fees for authors or readers.
In addition to its publishing endeavors, Pensoft also presented some of the EU-funded pollinator projects that it takes part in such as Safeguard, PollinERA, and WildPosh.
ICE2024 was a chance to advance entomological science and foster collaboration within the global scientific community. For those who missed the chance to connect with Pensoft in Kyoto, the company’s journals and platforms remain accessible online, offering opportunities to read and produce groundbreaking research in insect diversity and ecology.
It all began with an opening ceremony complete with live music and stunning visuals, which set the stage for five days of research exchange and collaboration.
Pensoft welcomed faces new and old at a decorated stand featuring numerous illustrated materials designed by scientific illustrator Denitsa Peneva. Manning the stand were Prof Dr Lyubomir Penev (MycoKeys Founding Editor & Pensoft Founder and CEO) and Slavena Peneva (Pensoft Head of Graphic Design).
MycoKeys materials esigned by Denitsa Peneva.Urmas Kõljalg and Lyubomir Penev.Lyubomir Penev, Dmitry Schigel and Slavena Peneva.
The booth hosted a special gathering for MycoKeys editors, including Editor-in-Chief Prof Dr Thorsten Lumbsch, who were shown a video looking back on the history of the journal. Many long-time collaborators of Pensoft, such as Prof Dr Urmas Kõljalg of Pluto F and Dr Dmitry Schigel of Pluto F, also dropped by to say hello.
📢Shoutout to everyone at @IMC12NL who visited our #IMC12 stand AND anyone who has submitted a manuscript to #MycoKeys, reviewed / edited; or simply remembers reading a good paper at our #journal!🍄
The congress provided the perfect opportunity to announce Pensoft’s new, exciting partnership with the International Mycological Association. This collaboration will see the IMAFungus journal move to the ARPHA platform, where it will benefit from cutting-edge publishing technology and workflows.
🔥LIVE from @IMC12NL: one of our most prolific editors & authors: Henrik R. Nilsson, @goteborgsuni with a talk on 'dark' #fungi and the proposal to name #fungi from #DNA#sequences as types.
The next International Mycology Congress will be held in Incheon, South Korea, in 2027. IMC13 already has an active website and the Pensoft team look forward to another exciting installment!