Conversation on the shore: Interview with ecologist & geographer Kremena Burkhard

Kremena’s work on local coastal ecosystems in Germany aims to develop approaches and methodologies which can be applied in an international context.

The shore is a mutual caress. More than just a place of encounter between land and water, it is one of the physical and imagined thresholds between humans and the other-than-human world. This place of touch - through thoughts, actions, interconnections, and affect - is the inevitable crossing at the beginning and end of every inquiry into the world’s bodies of water. 

In the context of the UN’s Decade of Ocean Science for Sustainable Development, the Decade of Ecosystem Restoration and the recent historic High Seas Treaty to establish Marine Protected Areas in international waters, the world looks into the deep blue. Let us, however, linger on the way there for a moment. Let us breathe, and let the shore catch our breath.


This moment on the shore leads us to a conversation with Kremena Burkhard – a researcher at the Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering at the Leibniz University Hannover, Germany. Kremena’s work focuses on the co-benefits and risks of carbon sequestration in coastal ecosystems. 

Late last year, she presented her most recent work at the 4th European conference of the Ecosystem Services Partnership (ESP), which won her one of the Best Poster Talk awards. 


I find the idea of improving the understanding of how ecosystems – and more generally the natural world – contribute to our well-being to be very inspiring and refreshing in a high-tech profit-oriented world,

she says to explain how she stays motivated in her research work.

To communicate this knowledge to policy- and decision-makers, as well as the general public is key, especially when we consider the threats of climate change and the fact that our deep dependency on nature seems to be largely undervalued,

she adds.
Kremena highlights the role of nature-based solutions:

When utilising conventional and  nature-based solutions, the focus is often on a single benefit that is demanded in a certain area, time and situation. 

In contrast to conventional solutions, nature-based solutions provide additional co-benefits. These may include biodiversity protection and other ecosystem services that address broader societal demands and are more sustainable in the long term.

As part of the CDRmare research mission “Marine carbon sinks in decarbonisation pathways” of the German Marine Research Alliance, Kremena’s work on coastal ecosystems aims to develop approaches and methodologies which can be applied in an international context.

Our project sea4soCiety focuses on the carbon storage capacity and co-benefits of four coastal vegetated ecosystems which play a key role as carbon sinks around the world and thus contribute to climate regulation. The analysis and methods developed in the project contribute scientifically to the studied topics and have an international relevance.

The German coast is representative of three coastal ecosystems, namely seagrass, salt marsh and macroalgae. The fourth ecosystem – that of mangrove forests in the tropics, is also investigated within the project as a key ocean carbon sink of global relevance.

But climate regulation is only one of the multiple services that these ecosystems provide. Coastal protection, water purification, food and material provision and recreation are among the key services of coastal ecosystems, the benefits of which are used and highly appreciated by the local communities and have significant role in the local safety, economy and culture. 

Kremena’s winning poster presented at the 4th European conference of the Ecosystem Services Partnership (ESP) (Crete, Greece 2022)
What are the strategies for mitigating or further analysing the risks of carbon sequestration in coastal ecosystems?

We prioritise conservation and restoration of coastal vegetated ecosystems, which are often heavily degraded, and we identify the most suitable areas for establishment of new ecosystems. This reduces the risk of carbon release and provides additional carbon sink capacity. 

Further risks are related to unknown climate change impacts. The sea temperature and hydrodynamics are changing, and we are not sure how those changes of habitat will impact the coastal ecosystems. We are studying their reaction in laboratory environments and in the field, identifying thresholds for their functionality and capacity to supply ecosystem services. 

Finally, the identification and mitigation of conflicts with other users of those ecosystems is also key to reduce the social risks for all beneficiaries, including labour, human rights, public health issues, and political uncertainty.

When it comes to stakeholders and non-experts, is science communication around the topic of carbon sequestration in coastal ecosystems effective?

On a national and international level, Germany seems to be on track with setting targets and planning actions to become climate neutral through the Climate Action Programme 2030.

The CDRmare research mission and in particular the sea4soCiety project on carbon sequestration in coastal ecosystems are in a way part of that effort, receiving funding to provide the knowledge base for the action programme. Thus, to some extent, the science communication on that level is working and the action plan is based on scientific knowledge. 

The shortcomings are in the implementation phase. Local governments are often lacking established mechanisms that allow and support the implementation of action plans related to the national targets.

Such regulated implementation strategies should operationalise the uptake of scientific knowledge in the management of coastal ecosystems and by the local communities, and also in all fields of policy and management.

Follow One Ecosystem

Protecting marine biodiversity: we take a look at science

In light of the UN’s High Seas Treaty, we look back at deep-sea science published in our journals.

Surely, March 2023 will be remembered with the historic agreement of UN member states to protect marine biodiversity in the world’s oceans

The so-called High Seas Treaty is a legal framework for the protection of marine biodiversity and responsible and equitable use of resources of areas beyond national jurisdiction (BBJN). Its draft, published on the 5th of March 2023, is the outcome of two decades of negotiations, and is part of the international effort to protect a third of the world’s biodiversity by 2030.

An unwavering dedication to the protection and conservation of biodiversity will be required to see the firm landing of this hopeful step.

On this occasion, we look back at some impactful studies published in our journals that have made waves, hopefully in the right direction towards impactful conservation measures and actions.

Following President Barack Obama’s expansion of the largest permanent Marine Protected Area on Earth (Papahānaumokuākea Marine National Monument) in 2016, a new species of coral-reef fish was named in his honour. The fish is the only known coral-reef species to be endemic to the Monument, and, despite its small size, it carries wide-reaching cultural and political significance as a reminder of how politics go hand in hand with science.

Former President of the United States, Barack Obama, arriving on Midway Atoll Midway on September 1, 2016 to commemorate his use of the Antiquities Act to expand the boundaries of the Papahānaumokuākea Marine National Monument. Dr. Sylvia Earle gives President Barack Obama a photograph of Tosanoides obama on Midway Atoll, from the film “Sea of Hope: America’s Underwater Treasures” premiered on National Geographic Channel on January 15, 2017. See also the news story on National Geographic.

Other studies from our flagship zoology journal ZooKeys have focused on the benthic megafauna and abyssal fauna of the Clarion-Clipperton Zone (CCZ) in the Pacific Ocean.

The Clarion-Clipperton Zone, managed by the International Seabed Authority, has been targeted by deep-sea mining interests. In the context of heightened concern over potential biodiversity loss, scientific research is crucial for informing policy-makers and the general public about the risks and outcomes of such initiatives.

The Clarion-Clipperton Zone, central Pacific Ocean (purple box), spanning 6 milllion km2. Knowledge of marine biodiversity in the area is crucial for its protection.
Image source: A. Glover at al. (2016).

The rich biodiversity of the deep sea has also been documented in big-scale taxonomic inventories and checklists in the Biodiversity Data Journal.

Such examples are the publication of 48 new echinoderm records from the CCZ made during a single 25-day cruise, marking a ~25% increase of the echinoderm species records previously available in databases. Other notable contributions are the first image atlas of annelid, arthropod, bryozoan, chordate, ctenophore and mollusc morphospecies and the first image atlas of echinoderm megafauna morphospecies inhabiting the UK-1 exploration contract area and the eastern CCZ. 

The echinoderm Amphioplus cf. daleus Lyman, 1879. Image source: A. Glover at al.
Hymenopenaeus cf. nereus observed in the UK-1 exploration contract area.
Image source: Amon et al. (2017).

Going forward, the expansion of Marine Protected Areas should also ensure the implementation of policies for the methods of resource extraction and their equitable sharing and use among the world’s nations.

Over the next few years, we hope to see an ever increasing interest in biodiversity conservation - from the general public, stakeholders and policy makers, and, of course, research institutions.

 We need to love what we protect in order to be able to protect it.

Follow Pensoft on Twitter and Facebook, and sign up for our newsletter on the right.

Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Flooded cities: A flood-regulating ecosystem services assessment for heavy rainfalls in urban areas

Scientists from Germany developed a framework with indicator suggestions to quantify and compare flood-regulating ecosystem services supply and demand.

Extreme weather events – like heavy rainfall – are a major environmental risk. Only recently after the Ecosystem Services Partnership (ESP) 2022 Europe Conference on Crete (Greece) some conference attendees were able to directly experience the effects of heavy rainfall, when air traffic was stopped in Heraklion for many hours, streets were flooded, properties damaged, and even people died.

Heavy rainfall can occur anywhere and are usually highly localized. Cities are particularly vulnerable to pluvial flooding because of the high degree of surface sealing, the high population density and the high potential of socio-economic damage in urban areas. In this light, ecosystems are important natural flood-regulating elements that can relieve grey infrastructure such as sewer systems. They can buffer rain events and prevent flooding as their functions turn into a flood-regulating ecosystem service (ES) to protect society.

So far, flood-regulating ES supply and demand for heavy rainfall in urban areas have rarely been studied. Therefore, scientists from the Climate Service Center Germany and the Leibniz University Hannover (Germany) developed a framework with indicator suggestions to quantify and compare flood-regulating ES supply and demand. Interception by canopies and infiltration in the soil serve as essential indicators for urban flood-regulating ES supply. The indicators can be quantified based on the outputs of a hydrological model that has explicitly been developed for this study. The model is based on single, individual landscape elements. It considers vegetation-hydrological interaction, and 2D surface water routing. Social-economic indicators and the surface flooding indicate the related ES demand.

A flooded neighbourhood. Photo by U.S. Geological Survey

In their study, published in the journal One Ecosystem, they assessed the flood-regulating ES of an urban district in the City of Rostock (Germany) for a one-hour heavy rainfall event. They found the highest mean ES supply on greened areas of forests, woodlands and green areas, resulting in a supply surplus. Whereas, sealed areas (paved surface where water cannot infiltrate into the soil), such as settlements, urban dense areas, traffic areas and industry, showed an unmet demand resulting from both low supply and relatively high actual demand. The results indicated that vegetation plays an important part in flood regulation, if the soils are saturated or sealed and, thus, should be considered in urban flood-regulating ES assessments.

Budget of the flood-regulating ecosystem services supply and demand resulting in unmet demand and supply surplus.

Analysing the supply and demand for flood-regulating ES is particularly important for urban planning in order to identify ES supply-demand mismatches. Based on this information, adaptation measures such as Nature-based Solutions can be planned and their possible ES contributions can be quantified. Since heavy precipitation events are projected to become more frequent and intense in the future, the future functionality of current flood-regulating ES and the benefits of adaptation measures under changing climate conditions need to be assessed. This provides information about changing ES supply and the development of ES demand.

Research article:

Wübbelmann T, Bouwer LM, Förster K, Bender S, Burkhard B (2022) Urban ecosystems and heavy rainfall – A Flood Regulating Ecosystem Service modelling approach for extreme events on the local scale. One Ecosystem 7. https://doi.org/10.3897/oneeco.7.e87458

Follow One Ecosystem on Facebook and Twitter.

Pensoft among the first 27 publishers to share prices & services via the Journal Comparison Service by Plan S

All journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

In support of transparency and openness in scholarly publishing and academia, the scientific publisher and technology provider Pensoft joined the Journal Comparison Service (JCS) initiative by cOAlition S, an alliance of national funders and charitable bodies working to increase the volume of free-to-read research. 

As a result, all journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

The JCS was launched to aid libraries and library consortia – the ones negotiating and participating in Open Access agreements with publishers – by providing them with everything they need to know in order to determine whether the prices charged by a certain journal are fair and corresponding to the quality of the service. 

According to cOAlition S, an increasing number of libraries and library consortia from Europe, Africa, North America, and Australia have registered with the JCS over the past year since the launch of the portal in September 2021.

While access to the JCS is only open to librarians, individual researchers may also make use of the data provided by the participating publishers and their journals. 

This is possible through an integration with the Journal Checker Tool, where researchers can simply enter the name of the journal of interest, their funder and affiliation (if applicable) to check whether the scholarly outlet complies with the Open Access policy of the author’s funder. A full list of all academic titles that provide data to the JCS is also publicly available. By being on the list means a journal and its publisher do not only support cOAlition S, but they also demonstrate that they stand for openness and transparency in scholarly publishing.

“We are delighted that Pensoft, along with a number of other publishers, have shared their price and service data through the Journal Comparison Service. Not only are such publishers demonstrating their commitment to open business models and cultures but are also helping to build understanding and trust within the research community.”

said Robert Kiley, Head of Strategy at cOAlition S. 

***

About cOAlition S:

On 4 September 2018, a group of national research funding organisations, with the support of the European Commission and the European Research Council (ERC), announced the launch of cOAlition S, an initiative to make full and immediate Open Access to research publications a reality. It is built around Plan S, which consists of one target and 10 principles. Read more on the cOAlition S website.

About Plan S:

Plan S is an initiative for Open Access publishing that was launched in September 2018. The plan is supported by cOAlition S, an international consortium of research funding and performing organisations. Plan S requires that, from 2021, scientific publications that result from research funded by public grants must be published in compliant Open Access journals or platforms. Read more on the cOAlition S website.

One Biodiversity Knowledge Hub to link them all: BiCIKL 2nd General Assembly

The FAIR Data Place – the key and final product of the partnership – is meant to provide scientists with all types of biodiversity data “at their fingertips”

The Horizon 2020 – funded project BiCIKL has reached its halfway stage and the partners gathered in Plovdiv (Bulgaria) from the 22nd to the 25th of October for the Second General Assembly, organised by Pensoft

The BiCIKL project will launch a new European community of key research infrastructures, researchers, citizen scientists and other stakeholders in the biodiversity and life sciences based on open science practices through access to data, tools and services.

BiCIKL’s goal is to create a centralised place to connect all key biodiversity data by interlinking 15 research infrastructures and their databases. The 3-year European Commission-supported initiative kicked off in 2021 and involves 14 key natural history institutions from 10 European countries.

BiCIKL is keeping pace as expected with 16 out of the 48 final deliverables already submitted, another 9 currently in progress/under review and due in a few days. Meanwhile, 21 out of the 48 milestones have been successfully achieved.

Prof. Lyubomir Penev (BiCIKL’s project coordinator Prof. Lyubomir Penev and CEO and founder of Pensoft) opens the 2nd General Assembly of BiCIKL in Plovdiv, Bulgaria.

The hybrid format of the meeting enabled a wider range of participants, which resulted in robust discussions on the next steps of the project, such as the implementation of additional technical features of the FAIR Data Place (FAIR being an abbreviation for Findable, Accessible, Interoperable and Reusable).

This FAIR Data Place online platform – the key and final product of the partnership and the BiCIKL initiative – is meant to provide scientists with all types of biodiversity data “at their fingertips”.

This data includes biodiversity information, such as detailed images, DNA, physiology and past studies concerning a specific species and its ‘relatives’, to name a few. Currently, the issue is that all those types of biodiversity data have so far been scattered across various databases, which in turn have been missing meaningful and efficient interconnectedness.

Additionally, the FAIR Data Place, developed within the BiCIKL project, is to give researchers access to plenty of training modules to guide them through the different services.

Halfway through the duration of BiCIKL, the project is at a turning point, where crucial discussions between the partners are playing a central role in the refinement of the FAIR Data Place design. Most importantly, they are tasked with ensuring that their technologies work efficiently with each other, in order to seamlessly exchange, update and share the biodiversity data every one of them is collecting and taking care of.

By Year 3 of the BiCIKL project, the partners agree, when those infrastructures and databases become efficiently interconnected to each other, scientists studying the Earth’s biodiversity across the world will be in a much better position to build on existing research and improve the way and the pace at which nature is being explored and understood. At the end of the day, knowledge is the stepping stone for the preservation of biodiversity and humankind itself.


“Needless to say, it’s an honour and a pleasure to be the coordinator of such an amazing team spanning as many as 14 partnering natural history and biodiversity research institutions from across Europe, but also involving many global long-year collaborators and their infrastructures, such as Wikidata, GBIF, TDWG, Catalogue of Life to name a few,”

said BiCIKL’s project coordinator Prof. Lyubomir Penev, CEO and founder of Pensoft.

“I see our meeting in Plovdiv as a practical demonstration of our eagerness and commitment to tackle the long-standing and technically complex challenge of breaking down the silos in the biodiversity data domain. It is time to start building freeways between all biodiversity data, across (digital) space, time and data types. After the last three days that we spent together in inspirational and productive discussions, I am as confident as ever that we are close to providing scientists with much more straightforward routes to not only generate more biodiversity data, but also build on the already existing knowledge to form new hypotheses and information ready to use by decision- and policy-makers. One cannot stress enough how important the role of biodiversity data is in preserving life on Earth. These data are indeed the groundwork for all that we know about the natural world”  

Prof. Lyubomir Penev added.
Christos Arvanitidis (CEO of LifeWatch ERIC) at the 2nd General Assembly of the BiCIKL project.

Christos Arvanitidis, CEO of LifeWatch ERIC, added:

“The point is: do we want an integrated structure or do we prefer federated structures? What are the pros and cons of the two options? It’s essential to keep the community united and allied because we can’t afford any information loss and the stakeholders should feel at home with the Project and the Biodiversity Knowledge Hub.”


Joe Miller, Executive Secretary and Director at GBIF, commented:

“We are a brand new community, and we are in the middle of the growth process. We would like to already have answers, but it’s good to have this kind of robust discussion to build on a good basis. We must find the best solution to have linkages between infrastructures and be able to maintain them in the future because the Biodiversity Knowledge Hub is the location to gather the community around best practices, data and guidelines on how to use the BiCIKL services… In order to engage even more partners to fill the eventual gaps in our knowledge.”


Joana Pauperio (biodiversity curator at EMBL-EBI) at the 2nd General Assembly of the BiCIKL project.

“BiCIKL is leading data infrastructure communities through some exciting and important developments”  

said Dr Guy Cochrane, Team Leader for Data Coordination and Archiving and Head of the European Nucleotide Archive at EMBL’s European Bioinformatics Institute (EMBL-EBI).

“In an era of biodiversity change and loss, leveraging scientific data fully will allow the world to catalogue what we have now, to track and understand how things are changing and to build the tools that we will use to conserve or remediate. The challenge is that the data come from many streams – molecular biology, taxonomy, natural history collections, biodiversity observation – that need to be connected and intersected to allow scientists and others to ask real questions about the data. In its first year, BiCIKL has made some key advances to rise to this challenge,”

he added.

Deborah Paul, Chair of the Biodiversity Information Standards – TDWG said:

“As a partner, we, at the Biodiversity Information Standards – TDWG, are very enthusiastic that our standards are implemented in BiCIKL and serve to link biodiversity data. We know that joining forces and working together is crucial to building efficient infrastructures and sharing knowledge.”


The project will go on with the first Round Table of experts in December and the publications of the projects who participated in the Open Call and will be founded at the beginning of the next year.

***

Learn more about BiCIKL on the project’s website at: bicikl-project.eu

Follow BiCIKL Project on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

***

All BiCIKL project partners:

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

One Ecosystem calls for papers that report ecosystem accounts

To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables.

In March 2021, the UN Statistical Commission adopted the System of Environmental-Economic Accounting Ecosystem Accounting (SEEA EA).

SEEA EA is a spatially-based, integrated statistical framework for organising biophysical information about ecosystems, measuring ecosystem services, tracking changes in ecosystem extent and condition, valuing ecosystem services and assets and linking this information to measures of economic and human activity. 

To help implement ecosystem accounts, the One Ecosystem journal provides a platform for scientists and statisticians to publish newly compiled accounting tables. 

The “Ecosystem Accounts” permanent collection welcomes articles that describe and report ecosystem accounting tables, compiled following the standards set by the SEEA EA. The current version of the framework is fully described in United Nations et al. (2021). System of Environmental-Economic Accounting—Ecosystem Accounting (SEEA EA), available as a white cover publication, pre-edited text subject to official editing at: https://seea.un.org/ecosystem-accounting.

This collection does not accept research papers on ecosystem accounting that solely report new developments on accounting methods, such as new models for ecosystem services, new indicators for ecosystem condition or new techniques for monetary valuation of ecosystems. 

The inclusion of a compiled ecosystem accounting table is mandatory for this collection. Otherwise, papers will be diverted to the regular issue of One Ecosystem. In such cases, the authors may also choose to submit their contributions to another topical collection. 

Detailed instructions for authors

Submitting authors need to select One Ecosystem as a journal and “Ecosystem Accounting table” as an article template in ARPHA Writing Tool

Submissions to this collection shall respect the following requirements:

Introduction:

  • The introduction makes clear reference to the type (or types) of account(s) submitted, the accounting area, and the accounting period. The introduction should contain a clear reference to the SEEA EA. 
  • The following accounting tables can be published with data referring to a specific accounting area and for a given accounting period:
  • Ecosystem extent account – physical terms: Total extent of area of one or more ecosystem types 
  • Ecosystem condition account – physical terms: (Aggregated) data on selected ecosystem characteristics and optionally the distance from a reference condition.
  • Ecosystem services flow account – physical terms: Physical supply of final ecosystem services by ecosystem assets and the use of those services by economic units.
  • Ecosystem services flow account – monetary terms: The monetary estimate of final ecosystem services by ecosystem assets and the use of those services by economic units.
  • Monetary ecosystem asset account – monetary terms: Stocks and changes in stocks (additions and reductions) of ecosystem assets in monetary terms.

Data and methods

  • This section describes which typologies or classifications have been used to classify ecosystems, ecosystem condition indicators, ecosystem services, or economic sectors. Preference should be given to different typologies proposed by SEEA EA, but deviations or other typologies are acceptable as well. 
  • The section provides a list of all ecosystem types, variables, indicators, or economic sectors used in the accounting tables and it provides references to the data sources used to quantify them. 
  • Optionally, papers justify the use of variables and indicators making reference to specific selection criteria. 
  • For ecosystem service accounts, this section describes or refers to the methods used to quantify ecosystem services.
  • For monetary accounts, this section describes or refers to the methods used to assign monetary values to ecosystem services.
  • The use of supplementary materials is recommended in case the description of data and methods is too long. In that case, this section contains a summary of the data and methods. 

Accounting tables and results

  • This section presents the accounting table(s). Ideally, this section presents the most aggregated version of the accounting table(s), while detailed versions with a high number of rows and columns can be easily published as a spreadsheet in the supplement section of the paper.
  • Stylised versions of accounting tables are available in the SEEA EA guidelines. A stylized example for each ecosystem accounting table is available in MS Excel. It is highly recommended to follow these examples to the maximum possible extent. 
  • Graphs or maps that illustrate the accounting tables or that provide key results used to compile the accounting table can be published as well in this section. 

Discussion 

In this section, authors are invited to add at least one of the following topics:

  • A short interpretation of the results: are the reported data comparable to other published data on ecosystem extent, condition or services or do they deviate substantially. 
  • Critique or comments on the SEEA EA framework. Identify issues with application of the framework. Highlight areas for improvement or further research.
  • Demonstration of how the accounts have been or can be used to support policy and decision making or implementation. Particular cases of interest are (however, not restricted to) agricultural, forestry, fishery and biodiversity policies, biodiversity and ecosystem monitoring and reporting, ecosystem restoration projects, demonstrating values of ecosystems, or environmental impact assessments.

***

Visit One Ecosystem’s website and the collection’s webpage

Follow One Ecosystem on Twitter and Facebook.

Green backyards help increase urban climate resilience: Here is how

New study evaluates the effects of greenery on thermal comfort, biodiversity, carbon storage and social interactions.

Green spaces in cities have a number of positive effects: they’re good for our physical and mental health, they’re good for the environment, and they can even help fight off the effects of climate change.

To explore the impact of additional green structures in cities, Katja Schmidt and Ariane Walz, affiliated with the University of Potsdam, Germany, quantified their effects on different aspects such as thermal comfort, biodiversity, carbon storage and social interaction. Their study, published in the open-access, peer-reviewed journal One Ecosystem, combines knowledge from health research, ecology and socio-ecological research, and shows how the better we know a particular type of ecosystem, the better we can adapt to climate change.

Green residential courtyards in Potsdam. Photo by Jan Michalko, University of Potsdam

Pursuing a multi-method approach that ranged from local climate measurements to habitat and tree mapping, the authors compared four green residential courtyards in Potsdam. The spaces were similarly built, but had different ratios and sizes of features (lawns, flowerbeds, paths, playgrounds and allotments), as well as different tree and shrub population. 

While doing their research, Schmidt and Walz saw how even small differences in the green structure affect the provision of benefits, but one thing was clear: the greener courtyards yielded more benefits. Trees have the vital ability to cool down the environment and increase thermal comfort. Remarkably, the researchers report additional cooling effects of up to 11°C in the greener court yards. This means that residential green structures can prove of great value for human health during summertime heat, when asphalt and buildings make hot days even hotter. Considering the ageing demographic and the likely increase of heatwaves in the area, this is likely to have even greater health implications in the coming years. 

Microclimatic measurements in residential courtyards. Photo by Tobias Hopfgarten, University of Potsdam

Urban green spaces can also be an important factor in carbon storage, as urban soils and trees have the capacity to act as a sink for atmospheric carbon dioxide. The residential yards with more and larger trees, logically, have the power to store more carbon. This is where proper maintenance comes in: when yards are managed sustainably, trees live longer and can store more carbon.

“Considering the trend of increasing quantity and magnitude of extreme weather events and the vulnerability of urban areas, green spaces are known to provide great potential to increase urban climate resilience. Our work highlights the widespread positive effects of additional green structures in residential open spaces, a type of urban green space that is frequently understudied,” points out Dr. Schmidt.

As a conclusion, the researchers point out that if land owners and leaseholders receive incentives to commit to climate adaptation, and neighbourhoods come up with deliberate management strategies, these benefits could be further enhanced, contributing to a more sustainable urban development.

Research article:

Schmidt K, Walz A (2021) Ecosystem-based adaptation to climate change through residential urban green structures: co-benefits to thermal comfort, biodiversity, carbon storage and social interaction. One Ecosystem 6: e65706. https://doi.org/10.3897/oneeco.6.e65706

An invasive plant may cost a Caribbean island 576,704 dollars per year

Guest blog post by Wendy Jesse

Coralita overgrowing vegetation. Photo from https://www.wur.nl/en/show/invasive-plants-in-caribbean-netherlands.htm

A recent study in One Ecosystem has estimated the severe loss of ecosystem service value as a result of the widespread invasion by the plant species Coralita (Antigonon leptopus) on the Caribbean island of St. Eustatius. The results illustrate the drastic impact that a single invader can have on the economy of a small island and inform policy makers about priority areas for invasive species management.

See for full article: Huisman, S., Jesse, W., Ellers, J., & van Beukering, P. (2021). Mapping the economic loss of ecosystem services caused by the invasive plant species Antigonon leptopus on the Dutch Caribbean Island of St. Eustatius. One Ecosystem6, e72881. https://doi.org/10.3897/oneeco.6.e72881

The invader: Coralita

Coralita is a fast-growing, climbing vine with beautiful pink or white flowers. Originally from Mexico, it was introduced as a popular garden plant to many Caribbean islands and around the world. Its fast-growing nature means that it can outcompete most native species for terrain, quickly becoming the dominant species and reducing overall diversity (Jesse et al. 2020, Nature Today 2020, Eppinga et al. 2021a). This is especially the case on St. Eustatius, where published ground surveys indicate that the plant already appears on 33 percent of the island.

Losses of ecosystem services

Coralita overgrowing cars. Photo by Rotem Zilber

We estimated the total terrestrial ecosystem service (ES) value on St. Eustatius to be $2.7 million per year by mapping five important terrestrial ecosystem services: Tourism, Carbon sequestration, Non-use (i.e., intrinsic biodiversity) value, Local recreational value, and Archeological value. Subsequently, we calculated Coralita-induced loss of ecosystem services under two realistic distributional scenarios of Coralita cover on the island: 3% of island dominantly covered (based on Haber et al. 2021, Nature Today 2021) and 36% dominant cover (if entire range would reach dominant coverage), causing an annual ES value loss of $39,804 and $576,704 respectively. The highest ES value (17,584 $/ha/year) as well as the most severe losses (3% scenario: 184 $/ha/year; 36% scenario: 1,257 $/ha/year) were located on the dormant Quill volcano; a highly biodiverse location with popular hiking trails for locals and tourists alike.

Consequences for policy makers and practitioners

Coralita blocking water a drainage channel. Photo by Wendy Jesse.

There is an urgent need for studies such as this one that help to bridge the gap between academia and policy planning, as these translate abstract numbers into intuitive information. Instead of invasive species being just a biological term, direct impacts on people’s value systems and sources of income immediately strike a chord. I experience this on a daily basis, because in addition to being a coauthor on this paper, I currently work as a policy employee in nature protection and management.

Coralita overgrowing archeological heritage on St. Eustatius. Photo from St. Eustatius Center for Archeological Research (SECAR)

This study helps to prioritize locations for invasive species prevention, management, eradication, and restoration. It is imperative that invasive species do not reach locations of high ecosystem service value. Management of isolated satellite patches of Coralita close to locations of high ES value will likely be most effective in halting the plant’s invasive spread (Eppinga et al. 2021b). Setting up a targeted monitoring and rapid response strategy, as well as legislation for biosecurity measures to prevent other invasive species from entering the island, would likely help to reduce impacts on the important ecosystem services on St. Eustatius.

References

Academic literature:

Eppinga, M. B., Haber, E. A., Sweeney, L., Santos, M. J., Rietkerk, M., & Wassen, M. J. (2021a). Antigonon leptopus invasion is associated with plant community disassembly in a Caribbean island ecosystem. Biological Invasions, 1-19.

Eppinga M, Baudena M, Haber E, Rietkerk M, Wassen M, Santos M (2021b) Spatially explicit removal strategies increase the efficiency of invasive plant species control.

Ecological Applications 31 (3): 1‑13. https://doi.org/10.1002/eap.2257Haber E, Santos M, Leitão P, Schwieder M, Ketner P, Ernst J, Rietkerk M, Wassen M, Eppinga M (2021) High spatial resolution mapping identifies habitat characteristics of the invasive vine Antigonon leptopuson St. Eustatius (Lesser Antilles). Biotropica 53 (3): 941‑953. https://doi.org/10.1111/btp.12939

Jesse, W. A., Molleman, J., Franken, O., Lammers, M., Berg, M. P., Behm, J. E., … & Ellers, J. (2020). Disentangling the effects of plant species invasion and urban development on arthropod community composition. Global change biology26(6), 3294-3306.

Blog posts on Nature Today website:

van Maanen, G. Molleman, J., Jesse, W.A.M. (2020) Drastic effects of coralita on the biodiversity of insects and spiders. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=26339

Dutch Caribbean Nature Alliance (2021) Using satellite imagery to map St. Eustatius’ coralita invasion. Nature Today. naturetoday.com/intl/en/nature-reports/message/?msg=28317