Its name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly appearance.
In the sun-scorched Pilbara region of north-western Australia, scientists have unearthed a mysterious creature from the shadows – a new ant species of the elusive genus Leptanilla.
The new species, Leptanilla voldemort – L. voldemort for short – is a pale ant with a slender build, spindly legs, and long, sharp mandibles. The species name pays homage to the dark wizard Lord Voldemort, the fearsome antagonist of the Harry Potter series, drawing parallels with the ant’s ghostly and slender appearance, and the dark underground environment, from which it has emerged.
Leptanilla voldemort was discovered during an ecological survey to document animals living belowground in the arid Pilbara region of north-western Australia. Only two specimens of the bizarre new ant species were found. Both were collected in a net that was lowered down a 25-metre drill hole and skilfully retrieved while scraping against the hole’s inner surface – an innovative technique for collecting underground organisms known as ‘subterranean scraping’.
Compared to other Leptanilla antspecies, L. voldemort has an extremely slender body as well as long, spindly antennae and legs. Together with its collection from a 25-metre-deep drill hole, this unusual morphologyhas left experts speculating as to whether it truly dwells in soil like other Leptanilla species, or exploits a different subterranean refuge, such as the air-filled voids and cracks that form within layers of rock deeper underground.
The long, sharp jaws of L. voldemort, however, leave little to the imagination.
“Leptanilla voldemort is almost surely a predator, a fearsome hunter in the dark. This is backed up by what we know from the few observations of specialised hunting behaviours in other Leptanilla antspecies, where the tiny workers use their sharp jaws and powerful stings to immobilise soil-dwelling centipedes much larger than them, before carrying their larvae over to feed on the carcass” said Dr Wong, lead author of the study.
The exact prey of L. voldemort, however, is not known, though a variety of other subterranean invertebrates, including centipedes, beetles and flies, were collected from the same locality.
There are over 14,000 species of ants worldwide, but only about 60 belong to the enigmatic genus Leptanilla. Unlike most ants, all species of Leptanilla are hypogaeic – their small colonies, usually comprising a queen and only a hundred or so workers, nest and forage exclusively underground. To adapt to life in darkness, Leptanilla workers are blind and colourless. The lilliputian members of the ant world, these ants measure just 1 to 2 millimetres – not much larger than a grain of sand – allowing them to move effortlessly through the soil. Due to their miniscule size, pale colouration, and unique underground dwellings, finding Leptanilla species is a challenge even for expert ant scientists, and much of their biology remains shrouded in mystery.
While Australia boasts some of the highest levels of ant diversity in the world – with estimates ranging from 1,300 to over 5,000 species – L. voldemort is only the second Leptanilla species discovered from the continent. The first, Leptanilla swani, was described nearly a century ago – from a small colony found under a rock in 1931 – and has almost never been seen since.
With its formation beginning approximately 3.6 billion years ago, the Pilbara is one of the oldest land surfaces on Earth. Despite the scorching summers and meagre rainfall, the region harbours globally important radiations of underground invertebrates. Adding to the unique biodiversity of this ancient landscape, the discovery of the enigmatic ant L. voldemort is a testament to the wizardry of nature and the mysteries of life in the depths of darkness.
Research article:
Wong MKL, McRae JM (2024) Leptanilla voldemort sp. nov., a gracile new species of the hypogaeic ant genus Leptanilla (Hymenoptera, Formicidae) from the Pilbara, with a key to Australian Leptanilla. ZooKeys 1197: 171-182. https://doi.org/10.3897/zookeys.1197.114072
The papillated redbait is a member of the family Emmelichthyidae. There are only 18 known species in this family, which are commonly called redbaits, rovers, or rubyfishes. These deepwater species can be found in warm, tropical waters and are usually bright shades of red, orange, and pink.
How did Bemis and her team make this remarkable discovery? To find out, we’ll have to first travel to a fish market in the Philippines.
A molecular mystery
As part of an interagency campaign to create a reference library of fish DNA “barcodes,” Bemis and her colleagues regularly travel abroad to collect fish specimens. Some come from seafood markets overseas where they are being sold for food. In the field, these new specimens are assigned a preliminary species identification. Then, they’re transported to the Smithsonian Institution and National Systematics Laboratory for genetic sequencing, data collection, and a secondary species confirmation.
Since getting involved with this project in 2021, Bemis and teammate Dr. Matthew Girard of the Smithsonian National Museum of Natural History have analyzed thousands of samples. None have made a bigger splash, though, than two small pink fish collected from a Philippine fish market on the island of Cebu.
While collecting data from these specimens, Girard made an exciting observation. Their genetic sequences did not match their initial species identification as golden redbaits—or any other species in the genetic library, for that matter. So which species did Girard and Bemis have on their hands?
In search of answers, Bemis and Girard examined other aspects of the specimens’ biology, including their anatomy. They discovered that these fish differed from the golden redbait in several ways, including:
A different number of gill rakers, structures inside the mouth that help fish to feed
A different number of pectoral fin rays
Two fleshy structures called papillae on the pectoral girdle
These differences, combined with the genetic data, provided evidence that the two specimens were not golden redbaits, but a previously undiscovered species. With only two confirmed specimens, Bemis and Girard wondered if other individuals could be identified in global natural history collections.
After some detective work, Bemis and Girard spotted a third specimen they hypothesized might also be the undescribed species. A fish with similar color also identified as a golden redbait had been collected from a fish market in the Philippines by the Kagoshima University Museum in Japan. Bemis and Girard studied the specimen and confirmed their hypothesis with genetic and anatomical data. This specimen became the third record of papillated redbait and, ultimately, the holotype for the species—the specimen upon which a new species description is based.
More to discover
Even after describing new species, there’s always more to learn. Bemis and Girard are energized that there is still much to discover about the papillated redbait and the redbait family, which is relatively poorly known. Any opportunity to add to this small body of knowledge and study redbait species in greater detail is valuable. “I’ve had researchers that work on fish taxonomy say to me, ‘I didn’t even know this family existed.’ That’s how little we know about this group,” Girard emphasizes.
Bemis also notes that because data on the papillated redbait comes from only three specimens purchased in fish markets, she still has lots of questions. For example, Bemis says that they don’t yet know if the new species occurs outside Philippine waters, or the exact habitat in which they occur. “We also don’t know anything about their reproduction or what they eat—really basic aspects of their biology remain to be studied. Now that we recognize that it is different, we only have more to study as new specimens of papillated redbait are collected,” Bemis says.
One thing is for certain, though. There are more species just waiting to be discovered, and they might be right under our noses. “I think the craziest thing is that the papillated redbait is a new species that came from a market,” Girard says. “The fact that there are undescribed species being sold without us even realizing it underscores how much we still have to learn about marine biodiversity.”
Research article:
Girard MG, Santos MD, Bemis KE (2024) New species of redbait from the Philippines (Teleostei, Emmelichthyidae, Emmelichthys). ZooKeys 1196: 95-109. https://doi.org/10.3897/zookeys.1196.111161
This story was originally published by NOAAFisheries. It is republished here with their permission.
Leiden – also known as the ‘City of Keys’ and the ‘City of Discoveries’ – was aptly chosen to host the third Empowering Biodiversity Research (EBR III) conference. The two-day conference – this time focusing on the utilisation of biodiversity data as a vehicle for biodiversity research to reach to Policy – was held in a no less fitting locality: the Naturalis Biodiversity Center.
On 25th and 26th March 2024, the delegates got the chance to learn more about the latest discoveries, trends and innovations from scientists, as well as various stakeholders, including representatives of policy-making bodies, research institutions and infrastructures. The conference also ran a poster session and a Biodiversity Informatics market, where scientists, research teams, project consortia, and providers of biodiversity research-related services and tools could showcase their work and meet like-minded professionals.
BiCIKL stops at the Naturalis Biodiversity Center
The famous for its bicycle friendliness country also made a suitable stop for BiCIKL (an acronym for the Biodiversity Community Integrated Knowledge Library): a project funded under the European Commission’s Horizon 2020 programme that aimed at triggering a culture change in the way users access, (re)use, publish and share biodiversity data. To do this, the BiCIKL consortium set off on a 3-year journey to build on the existing biodiversity data infrastructures, workflows, standards and the linkages between them.
Many of the people who have been involved in the project over the last three years could be seen all around the beautiful venue. Above all, Naturalis is itself one of the partnering institutions at BiCIKL. Then, on Tuesday, on behalf of the BiCIKL consortium and the project’s coordinator: the scientific publisher and technology innovator: Pensoft, Iva Boyadzhieva presented the work done within the project one month ahead of its official conclusion at the end of April.
As she talked about the way the BiCIKL consortium took to traverse obstacles to wider use and adoption of FAIR and linked biodiversity data, she focused on BiCIKL’s main outcome: the Biodiversity Knowledge Hub (BKH).
Intended to act as a knowledge broker for users who wish to navigate and access sources of open and FAIR biodiversity data, guidelines, tools and services, in practicality, the BKH is a one-stop portal for understanding the complex but increasingly interconnected landscape of biodiversity research infrastructures in Europe and beyond. It collates information, guidelines, recommendations and best practices in usage of FAIR and linked biodiversity data, as well as a continuously expanded catalogue of compliant relevant services and tools.
At the core of the BKH is the FAIR Data Place (FDP), where users can familiarise themselves with each of the participating biodiversity infrastructures and network organisations, and also learn about the specific services they provide. There, anyone can explore various biodiversity data tools and services by browsing by their main data type, e.g. specimens, sequences, taxon names, literature.
Indisputably, the ‘hot’ topics at the EBR III were the novel technologies for remote and non-invasive, yet efficient biomonitoring; the utilisation of data and other input sourced by citizen scientists; as well as leveraging different types and sources of biodiversity data, in order to better inform decision-makers, but also future-proof the scientific knowledge we have collected and generated to date.
Amongst the other Horizon Europe projects presented at the EBR III conference was B-Cubed (Biodiversity Building Blocks for policy). On Monday, the project’s coordinator Dr Quentin Groom (Meise Botanic Garden) familiarised the conference participants with the project, which aims to standardise access to biodiversity data, in order to empower policymakers to proactively address the impacts of biodiversity change.
You can find more about B-Cubed and Pensoft’s role in it in this blog post.
MAMBO: another Horizon Europe project where Pensoft has been contributing with expertise in science communication, dissemination and exploitation, was also an active participant at the event. An acronym for Modern Approaches to the Monitoring of BiOdiversity, MAMBO had its own session on Tuesday morning, where Dr Vincent Kalkman (Naturalis Biodiversity Center), Dr France Gerard (UK Centre for Ecology & Hydrology) and Prof. Toke Høye (Aarhus University) each took to the stage to demonstrate how modern technology developed within the project is to improve biodiversity and habitat monitoring. Learn more about MAMBO and Pensoft’s involvement in this blog post.
On the event’s website you can access the MAMBO’s slides presentations by Kalkman, GerardandHøye, as presented at the EBR III conference.
***
The EBR III conference also saw a presentation – albeit remote – from Prof. Dr. Florian Leese (Dean at the University of Duisburg-Essen, Germany, and Editor-in-Chief at the Metabarcoding and Metagenomics journal), where he talked about the promise, but also the challenges for DNA-based methods to empower biodiversity monitoring.
Amongst the key tasks here, he pointed out, are the alignment of DNA-based methods with the Global Biodiversity Framework; central push and funding for standards and guidance; publication of data in portals that adhere to the best data practices and rules; and the mobilisation of existing resources such as the meteorological ones.
He also made a reference to the Forum Paper “Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms” by R. Henrik Nilsson et al., where the international team provided a brief rationale and an overview of guidelines targeting the principles and approaches of exposing DNA-derived occurrence data in the context of broader biodiversity data. In the study, published in the Metabarcoding and Metagenomics journal in 2022, they also introduced a living version of these guidelines, which continues to encourage feedback and interaction as new techniques and best practices emerge.
***
You can find the programme on the conference website and see highlights on the conference hashtag: #EBR2024.
Males of the species have a yellow head and forebody and light blue spots on the back and they live in low elevation forests of the Southern Western Ghats.
You’ve probably seen nature depicted in art, but how often do you see an artwork hiding in nature?
When they saw the back of a lizard in the Southern Western Ghats, a group of scientists from the Thackeray Wildlife Foundation in India were reminded of Van Gogh’s The Starry Night. As soon as they figured out it was a new species, it was only apt to name it in honour of the famous painter.
“Cnemaspis vangoghi is named for Dutch painter Vincent Van Gogh (1853–1890) as the striking colouration of the new species is reminiscent of one of his most iconic paintings, The Starry Night,” explains Ishan Agarwal, who took part in the study to describe the new lizard. Males of the species have a yellow head and forebody and light blue spots on the back and they live among rocks and occasionally buildings and trees.
Together with his fellow researchers Akshay Khandekar and Tejas Thackeray, they found the new species during an expedition in April 2022 to the the Southern Western Ghats in Tamil Nadu, India. Now, they have published their findings in the peer-reviewed journal ZooKeys.
“Tamil Nadu is an exceptionally biodiverse state and we expect to name well over 50 new species of lizards by the time we are done [with our expeditions]!,” Ishan Agarwal says.
“I also had more than 500 tick bites during that summer trip, with the highest densities in the low-elevation, dry forests of Srivilliputhur, where the new species are found,” he adds.
Cnemaspis vangoghi is a small-sized gecko that can reach 3,4 cm in length. It was described as new to science together with another species of its genus, Cnemaspis sathuragiriensis, named for its type locality the Sathuragiri Hills.
“The two new species are distributed in low elevation (250–400 m asl.), deciduous forests of Srivilliputhur, and add to the five previously known endemic vertebrates from Srivilliputhur-Megamalai Tiger Reserve, Tamil Nadu, India,” Ishan Agarwal explains. They are diurnal and mainly active during the cool hours of the early morning and evening, found largely on rocks. So far, they have only been found in very restricted localities, “an interesting case of micro-endemism in low-elevation species,” he notes.
Research article:
Khandekar A, Thackeray T, Agarwal I (2024) Two new species of the Cnemaspis galaxia complex (Squamata, Gekkonidae) from the eastern slopes of the southern Western Ghats. ZooKeys 1196: 209-242. https://doi.org/10.3897/zookeys.1196.117947
Where would we be without taxonomists? We wouldn’t even want to imagine such a scenario, even though experts in taxonomy are declining at an alarming rate, just like some of the threatened species they describe.
This Taxonomist Appreciation Day is a great excuse to marvel at the amazing species that biodiversity specialists continue describing across the globe. The World Register of Marine Species does that by publishing a selection of the top 10 marine species published each year – we’re proud to share with you that two of 2023’s top marine species were first introduced to the scientific world on the pages of our journal ZooKeys!
The most spectacularly colored nemertean in the Caribbean, if not the world, it has a long, thin, thread-like body that can stretch much more than 200 mm long. Its head has a characteristic, narrow diamond or spearhead shape, vaguely reminiscent of a viper’s head.
Its name refers to the bright, colorful iridescent stripes and spots characterizing it. Bifrost, the rainbow bridge in the Norse mythology, reaches between Midgard, the human Earth, and Asgard, the realm of the gods. Some authors state that the name Bifrost means “shimmering path” or “the swaying road to heaven”, and that it might be inspired by the Milky Way.
This benthic marine worm usually lives in coral rubble, gravel, and shell hash. It can often be found stretched between nooks and crannies of the substratum.
Tetranemertes bifrost
Found near Bocas del Toro, Panamá, it is one of the first records of this genus in the Carribean sea.
In the 1970s, some 50 years before it was scientifically described, Smithsonian photographer Kjell Sandved took a picture of it draped over an unknown fan coral off Puerto Rico.
The second ZooKeys species featured in the selection is the whimsical Nautilus samoaensis.
Nautilus samoaensis
Nautiloids were in fact quite plentiful throughout the oceans at one point, based upon the fossil record. Today, they are represented by just a handful of species. Nautilus samoaensis and two other species got described as new to science in ZooKeys in early 2023, proving that Nautilus are more diverse than one could think.
Nautilus samoaensis has a beautiful shell; in fact, its shell color pattern is the most unique of all Nautilus species. It is composed of multiple, branching stripes that have a rearward projection after descending from the venter. No other known Nautilus species shows this color pattern. It lives near Pago Pago, American Samoa, where it has been found at depths between 200 and 400 m.
This marine species also ranked second in Pensoft’s Top 10 New Species selection for 2023.
Last year, we told you about the peculiarities of studying nautilus species, but these animals are actually under a serious threat from illegal fishing, as they are highly prized for their shells.
The Top 10 Marine Species is an initiative that brings awareness to the importance of the work of biodiversity scholars, so announcing it on Taxonomist Appreciation Day is only fitting; but it also highlights the need to better protect our oceans and the unique life that hides in there.
In 2023, the world of biodiversity saw some amazing discoveries . Our taxonomy journals published hundreds of new species, so selecting a Top Ten was tough, but here we go – get to know these beautiful new species, and maybe think about all the amazing diversity that still remains unexplored on our planet.
10. The walking leaf
It’s very often that undescribed species hide in plain sight for years, but it’s easy to understand why when they look like that! Leaf insects look confusingly similar to leaves – this sophisticated camouflage provides excellent protection from predators, but also presents a challenge to researchers.
“There are around 3,500 known species of stick and leaf insects and there are currently just over 100 described species of leaf insect,” researcher Dr Sven Bradler says. This is why when Phyllium ortizi and six other leaf insect species were found, it made for a really special discovery.
Lime-green in colour, Phyllium ortizi is so far only known from Mindanao Island, Philippines.
The Eastern Forest Hedgehog (Mesechinus orientalis) was discovered in southwestern China. It is a small-bodied hedgehog, smaller than most of the other species in its genus, its spines as short as 1.8-2 cm. It has a brown nose, with black whiskers that shorten towards the nose.
The species is currently known from southern Anhui and northwestern Zhejiang, where it lives in scrubland and subtropical broad-leaf evergreen forests at elevations from 30 to 700 m.
The researchers found out that genus Mesechinus, to which the new species belongs, dates back to the early Pleistocene and started appearing around 1.71 million years ago, while M. Orientalis diverged from its congeners some 1.1 million years ago.
Published in ZooKeys.
8. The bumpy salamander
Tylototriton zaimengwas found in the eponymous Zaimeng lake in Manipur, India. It is a medium-sized salamander has a massive wide head that could take up as much as a quarter of its total length. Its most distinctive feature are the knob-like warts along its body.
The salamander has an earthy-brown body with orange markings along its head and orange-brown warts down its back and sides. Its tail fades from brown at the base to yellow-orange at the tip.
#NewSpecies! New crocodile newt from India just snuck in:
An unexpected discovery, this new treefrog species was found in the Amazon lowlands of central Peru. The research team, led by Germán Chávez, was surprised that a new species could be hiding in plain sight in an otherwise well-explored part of the Amazon. No matter how many times they returned to the site, they only found two specimens, which made its scientific description challenging.
Its name, Scinax pyroinguinis, literally means “groins of fire”. It is a reference to the orange, flame-like pattern on the groins, thighs and shanks, but also to the wildfires in the area where it was found, which are a serious threat to its habitat.
Pinguicula ombrophila is part of the butterwort family, a group of insectivorous flowering plants consisting of around 115 species. Its leaves have a sticky texture, enabling it to capture and digest small insects.
For carnivorous plants, insects can be an additional source of nutrients to help them compensate the nutrient deficiency of the substrate they’re growing in. This gives them a competitive advantage over other plants and enables them to thrive in challenging habitats.
While the majority of butterworts are found in the northern hemisphere, this species was discovered in the elevated regions of southern Ecuador, near the Peru border. The research team found it on a nearly vertical rock face at 2,900 metres. Its name means “rain-loving butterwort”, highlighting the plant’s preference for very wet conditions.
Sinocyclocheilus longicornus(from the Latin words “longus”, meaning long, and “cornu”, meaning horn) comes from Southern China. It is only known from a dark vertical cave at an elevation of 2,276 m in the province of Guizhou. It is around 10-15 centimeters long and lacks pigmentation in its scales, which gives it it a ghostly whitish appearance. Since its eyes are small and probably not much help in a completely dark environment, it relies on barbels that look like tiny whiskers to feel its way around.
The researchers that found it are not quite sure what its “horn” is used for, but it might have something to do with navigating its way in the dark and dreary environment it inhabits.
Sinocyclocheilus longicornus is also featured in the SHOALS report on freshwater fish species described in 2023.
Sibon irmelindicaprioae was described as a new species together with four more tree-dwelling snake species from jungles of Ecuador, Colombia, and Panama. They all belong to Dipsadinae —a subfamily of snakes found in North and South America.
Also known as DiCaprio’s snail-eating snake, this species was named after actor and film producer Leonardo DiCaprio’s mother, Irmelin DiCaprio. The actor himself chose the name to honour his mother and raise awareness about the threats these snakes face.
Its habitat in Panama is affected by large-scale copper mining. The open-pit mines, some of them visible from space, make the areas uninhabitable for snail-eating snakes.
“These new species of snake are just the tip of the iceberg in terms of new species discoveries in this region, but if illegal mining continues at this rate, there may not be an opportunity to make any future discoveries,” says Alejandro Arteaga, who led the study to describe them.
Published in ZooKeys.
3. The Tolkien frog
You probably guessed it by now – this stream frog from the Ecuadorian Andes was named after J.R.R. Tolkien, the author of The Hobbit and The Lord of the Rings.
At about 66 millimeters (2.5 inches) long, Hyloscirtus tolkieniis tiny enough to fit in the palm of your hand, but that doesn’t stop it from being simply stunning. With pale pink eyes and gold-speckled toes, it looks like it came straight out of Middle-earth. It was found at an elevation of 3190 meters in Río Negro-Sopladora National Park, a protected area of páramo and cloud forests.
I'm at a nerd convention today so here's the nerdiest frog I could find. Frog of the day is Hyloscirtus tolkieni, named for J. R. R. Tolkien. Photo is from the paper describing its recent discovery! https://t.co/DsQmzm7Np2pic.twitter.com/fpKBST6Uux
— LadyLasergun | Teatuber (@LadyLasergun) August 3, 2023
“The new species of frog has amazing colours, and it would seem that it lives in a universe of fantasies, like those created by Tolkien. The truth is that the tropical Andes are magical ecosystems where some of the most wonderful species of flora, funga, and fauna in the world are present. Unfortunately, few areas are well protected from the negative impacts caused by humans. Deforestation, unsustainable agricultural expansion, mining, invasive species, and climate changes are seriously affecting Andean biodiversity”, said Diego F. Cisneros-Heredia, one of the researchers behind this discovery.
Published in ZooKeys.
2. The enigmatic Nautilus
2023 was a great year for nautilus biodiversity: three species were described as new to science, including Nautilus samoaensis, which you see here. Like its name tells you, it was found off the coast of American Samoa.
Studying nautilus diversity is no easy feat – with setting spiky traps, hauling them over on board, and, eventually, burping nautiluses, it is surely a memorable experience.
Judging by the fossil record, nautiloids were once quite plentiful throughout the oceans. Today, however, they are represented by just a handful of species.
In addition, these fragile animals remain threatened by wildlife trade as they are hunted for their shells, which according to Mongabay can sell for up to about $1,000 each on the black market.
Found in Thailand’s Phang-Nga province, Chilobrachys natanicharum features an enchanting phenomenon: a neon blue-purple coloration that gives it a unique look.
There is no blue pigment in this tarantula’s body: the secret behind its striking color comes from the unique structure of its hair, which incorporates nanostructures that manipulate light in an effect that creates the blue appearance. Depending on the light, it can also appear violet.
Before it was described as a new species, Chilobrachys natanicharum was actually known to experts from the commercial tarantula trade market as “Chilobrachys sp. Electric Blue Tarantula,” but this is the first time that it’s discovered in its natural habitat.
Its name, in fact, resulted from an auction campaign, the proceeds from the auction have been channeled to bolster the education of Lahu children in Thailand and to aid impoverished cancer patients.
The city of Cambridge and the Wellcome Campus hosted the Final General Assembly of the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library): a 36-month endeavour that saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields. Consortium members who could not attend the meeting in Cambridge joined the meeting remotely.
After a welcome cocktail reception on Monday evening at Hilton Cambridge City Centre, on Tuesday, the consortium made an early start with a recap of BiCIKL’s key milestones and outputs from the last three years. All Work Package leaders had their own timeslot to discuss the results of their collaborations.
They all agreed that the Biodiversity Knowledge Hub – the one-stop portal for understanding the complex – yet increasingly interconnected landscape of biodiversity research infrastructures – is likely the flagship outcome of BiCIKL.
Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers at the BiCIKL’s third and final General Assembly in Cambridge, United Kingdom.
In the afternoon, the participants focused on the services developed under BiCIKL. Amongst the many services resulting from the project some were not originally planned. Rather those were the ‘natural’ products of the dialogue and collaboration that flourished within the consortium throughout the project. “A symptom of passion,” said Prof. Lyubomir Penev, project coordinator of BiCIKL and founder/CEO of Pensoft Publishers.
An excellent example of one such service is what the partners call the “Biodiversity PMC”, which brings together biodiversity literature from thousands of scholarly journals and over 500,000 taxonomic treatments, in addition to the biomedical content available from NIH’s PubMed Central, into the SIB Literature Services (SIBiLS) database. What’s more, users at SIBiLS – be it human or AI – can now use advanced text- and data-mining tools, including AI-powered factoid question-answering capacities, to query all this full-text indexed content and seek out, for example, species traits and biotic interactions. Read more about the “Biodiversity PMC” in its recent official announcement.
Far from being the only one, the “Biodiversity PMC” is in good company: from the blockchain-based technology of LifeBlock to the curation of the DNA sequences by PlutoF, the BiCIKL project consortium takes pride in having developed twelve services dedicated to FAIR and linked ready-to-use biodiversity data.
On Wednesday, the consortium focused on BiCIKL’s activities from the Transnational and Virtual Access Pillar, which included both presentations by each open call leader and VA leader, as well as open discussions and a recap of what the teams have learnt from these experiences.
A panel discussion took place on Thursday as part of an open event, where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus.
Thursday was dedicated to an open event where BiCIKL partners and ELIXIR Biodiversity and Plant Communities came together to discuss the Future of Biodiversity and Genomics data integration at the EMBL Wellcome Genome Campus. You can find the agenda on BiCIKL’s website.
After 36 months of action, the BiCIKL project will officially end in April 2024, but does it mean that all will be done and dusted come May 2024? Certainly not, point out the partners.
To ensure that the Biodiversity Knowledge Hub will not only continue to exist but will not cease to grow in both use and participation, the one-stop portal will remain under the maintenance of LifeWatch ERIC.
In conclusion, we could say that an appropriate payoff for the project is “Stick together!” as put by BiCIKL’s Joint Research Activity Leader Dr. Quentin Groom.
Final words at the third and last General Assembly of the BiCIKL project.
You can find highlights from the BiCIKL General Assembly meeting on X via the #BiCIKL_H2020 hashtag (in association with #Cambridge and #finalGA)
All research outputs, including the approved grant proposal, policy briefs, guidelines papers and research articles associated with the project, remain openly accessible from the BiCIKL project outcomes collection in RIO Journal: https://doi.org/10.3897/rio.coll.105.
Until recently, Orthacanthus gracilis could have been considered the “John Smith” of prehistoric shark names, given how common it was.
Three different species of sharks from the late Paleozoic Era – about 310 million years ago – were mistakenly given that same name, causing lots of grief to paleontologists who studied and wrote about the sharks through the years and had trouble keeping them apart.
But now Loren Babcock, a professor of earth sciences at The Ohio State University, has finished the arduous task of renaming two of the three sharks – and in the process rediscovered a wealth of fossil fishes that had been stored at an Ohio State museum for years but had been largely forgotten.
Loren Babcock with a collection of Orton Museum’s fossil fishes, including several from John Newberry. Photo by The Ohio State University
In order to change the names, Babcock had to go through a process governed by the International Commission on Zoological Nomenclature (ICZN). He had to document the need to change the names, propose new names and submit them to an ICZN-recognized journal for peer review and then have the ICZN officially accept the names.
Tooth of the shark Orthacanthus lintonensis. The tooth is about 13 mm long.
“It was one of the most complex naming problems we have had in paleontology, which is probably one reason no one attempted to fix it until now,” Babcock said.
“A lot of scientists in the field have written, thanking me for doing this. We are all happy it is finally done,” he said.
One measure of the impact the renaming has had on the field: Babcock’s paper announcing the new names was just published in the journal ZooKeys on Jan. 8, but it has already been referenced on seven different Wikipedia pages.
The original Orthacanthus gracilis fossil was found in Germany and named in 1848. That species gets to keep the name.
The remaining two fossils were found in Ohio and named by the famous American paleontologist John Strong Newberry in 1857 and 1875.
Portrait of John Strong Newberry
Babcock renamed the Ohio sharks Orthacanthus lintonensis and Orthacanthus adamas, both based on the name of the place where they were originally found.
Why did Newberry give the two Ohio sharks the same name?
“He probably just forgot. It was nearly 20 years between the time the two species were named,” Babcock said.
And as far as giving it the same name as a German species: “In those days, it was really difficult to search for names that were already in existence – they did not have the internet.”
The sharks themselves were fascinating creatures, Babcock said. They were large and creepy, nearly 10 feet long, and looked more like eels than present-day sharks, with long dorsal fins extending the length of their backs and a peculiar spine extending backward from their heads.
They lived in the fresh or brackish water of what are known as “coal swamps” of the late Carboniferous Period (323-299 million years ago) during the late Paleozoic Era. They belong to an extinct group of chondrichthyans (which includes sharks, skates and rays) called the xenacanthiforms.
Dorsal spine of Orthacanthus adamas. The spine is about 71 mm long.
Newberry was for a time the chief geologist at the Geological Survey of Ohio. He played an important role in the early growth of what is now the Orton Geological Museum at Ohio State.
Babcock, who is the current director of the Orton Museum, decided to begin the renaming process after reviewing the museum’s collection. He was surprised to see how many fossils the museum had that had been collected by Newberry, including the two prehistoric sharks.
Through the years, scientists have written about how various Newberry specimens had been lost. It turns out many had been at the Orton Museum.
“No museum has a larger collection of Newberry’s fossils except for the American Museum of Natural History in New York City,” Babcock said.
“Not a lot of people are aware of that – I did not even know the extent of our collection. If you’re looking for part of the Newberry collection and can’t find it in the American Museum of Natural History, it is probably going to be here.”
Research article:
Babcock LE (2024) Replacement names for two species of Orthacanthus Agassiz, 1843 (Chondrichthyes, Xenacanthiformes), and discussion of Giebelodus Whitley, 1940, replacement name for Chilodus Giebel, 1848 (Chondrichthyes, Xenacanthiformes), preoccupied by Chilodus Müller & Troschel, 1844 (Actinopterygii, Characiformes). ZooKeys 1188: 219-226. https://doi.org/10.3897/zookeys.1188.108571
News piece originally published by the Ohio State University. Republished with permission.
There are about 25,000 islands in the Pacific Ocean. The most remote of them are in North and East Polynesia, the Hawaiian Islands, and French Polynesia. Biologists have been attracted to these regions since the 18th century, but French Polynesia has received much less attention compared to the Hawaiian Islands.
A view of the area where Olpium caputi was found. Photo by Frédéric A. Jacq
Contributions to our knowledge of the pseudoscorpions of French Polynesia date from the 1930s and are associated with the Pacific Entomological Survey. Since then, the French Polynesian pseudoscorpion fauna has consisted of only four known species.
A female individual of Olpium caputi.
Thanks to international cooperation, a team of enthusiastic scientists has published the first discovery of a new species of pseudoscorpion from French Polynesia. Between 2017 and 2020, they studied French Polynesia’s fauna and environment for the French Polynesian Agricultural Service and as a part of a large-scale survey of arthropods. During their research work, they collected a few pseudoscorpion specimens on Huahine and Tahiti in the Society Islands.
Among them is a new species named Olpium caputi, collected by sieving moss at 1,450 m about sea level on the Mont Marau Summit, Tahiti, one of the Society Islands archipelago. Its scientific name honours Zuzana Čaputová, the President of Slovakia.
“As a female leader, she takes a strong stance and supports women and scientists. Even in the 21st century, women in science or top positions are rare. The rarity of the research in French Polynesia, the uniqueness of the discovery, and the fact that the new species is a female, led us to name it after this inspiring woman who can be a role model of courage and perseverance for many women,” says Jana Christophoryová, who led the study.
The paper is published in the open-access, peer-reviewed journal ZooKeys.
The team:
Katarína Krajčovičová of Bratislavské regionálne ochranárske združenie – BROZ, Bratislava, and Jana Christophoryová of Comenius University, Bratislava, are both zoologists, who specialize in the taxonomy, distribution, and ecology of pseudoscorpions. Frédéric Jacq, botanist, and Thibault Ramage, entomologist, are independent naturalists who have been working on improving the faunistic and taxonomic knowledge of French Polynesia for over 15 years.
Research article:
Krajčovičová K, Ramage T, Jacq FA, Christophoryová J (2024) Pseudoscorpions (Arachnida, Pseudoscorpiones) from French Polynesia with first species records and description of new species. ZooKeys 1192: 29-43. https://doi.org/10.3897/zookeys.1192.111308
The indexing is one of the major outcomes from the partnerships within the Horizon 2020-funded project Biodiversity Community Integrated Knowledge Library (BiCIKL)
In a joint effort between the Swiss-based Text Mining group of Patrick Ruch at SIB (developing SIBiLS), the text- and data-mining association Plazi and scientific publisher Pensoft, the long-time collaborators have started feeding full-text content of over 500,000 taxonomic treatments extracted by Plazi and tens of thousands full-text articles from 40 well-renowned biodiversity journals published by Pensoft to the SIBiLS database.
What this means is that users at SIBiLS – be it human or AI – have now gained access to advanced text- and data-mining tools, including AI-powered factoid question-answering capacities, to query all this full-text indexed content and seek out, for example, species traits and biotic interactions.
To index and directly feed the content from its 40+ academic outlets at SIBiLS, Pensoft relies on advanced and full-text TaxPub JATS XML journal publication workflow, powered by the ARPHA publishing platform. Meanwhile, Plazi uses its GoldenGate text- and data-mining software to harvest taxon treatments from over 80 journals stored at TreatmentBank and the Biodiversity Literature Repository, and then further re-used by GBIF, OpenBiodiv and now by SiBILS.
Seen as a pilot, the indexing – the partners believe – could soon be extended with other journals relying on modern publishing or converted legacy publications.
However, there were still gaps left to bridge before SIBiLS could indeed be dubbed “the Biodiversity PMC”, and those have mostly been about volume and breadth of content. While the above-mentioned five journals by Pensoft had long been indexed by SIBiLS through harvesting PMC, those had been quite an exception since, several years ago, a reorganisation at PMC moved the focus of the database to almost exclusively biomedical content, thus leaving biodiversity journals out of the scope of the database.
In the meantime, while Plazi has been feeding SIBiLS a growing volume of taxonomic treatments and visual data, as it was exponentially increasing the number of publishers and journals it mined data from, a lot of biodiversity data (e.g. genetic, molecular, ecological) published in the article narratives that were not taxon treatments could not make it to the portal.
“We all know the advantages and practical uses PMC offers to its users, so we cannot miss the opportunity to incorporate this well-proven approach to navigate the data deluge in biodiversity science. Undoubtedly, it is an extremely ambitious and demanding task. Yet, I believe that, at the BiCIKL consortium, we have made it pretty clear we have the necessary expertise, know-how and aspiration to take on the challenge,”
said Prof. Lyubomir Penev, founder/CEO at Pensoft and project coordinator of BiCIKL.
“For far too long, scientific knowledge about biodiversity has been imprisoned in a continuously growing corpus of scientific outputs, which – most of the time – are published in unstructured formats, such as PDF, or as paywalled content, and often locked by both! This means that they are – at best – difficult to access and comprehend by computer algorithms. In the meantime, we need all that knowledge, in order to accelerate our understanding of the dynamics of the global biodiversity crisis and to efficiently assess the impact of climate change. This is why the need for advanced workflows and tools to annotate, mine, query and discover new facts from the available literature is more than obvious,”
added Dr. Donat Agosti, President at Plazi.
“In the course of the BiCIKL project, at SIBiLS, we started indexing a larger set of biodiversity-related contents in the broad sense, including environmental sciences and ecology, to build a new literature database, or what we now call ‘Biodiversity PMC’. Now, with the help of Plazi and Pensoft, we provide a unique entry point to half a million taxonomic treatments, which were not included into the original PubMed Central. Next on the list is to expand our network of literature sources and continue this exponential growth of queryable biodiversity knowledge to turn Biodiversity PMC into the “One Health” library. We promise to keep you posted,”
said Dr. Patrick Ruch, Group Leader at SIB and Head of Research at HES-SO, HEG Geneva, Switzerland.
SIB is an internationally recognized non-profit organisation, dedicated to biological and biomedical data science. SIB’s data scientists are passionate about creating knowledge and solving complex questions in many fields, from biodiversity and evolution to medicine. They provide essential databases and software platforms as well as bioinformatics expertise and services to academic, clinical, and industry groups. With the recent creation of the Environmental Bioinformatics group, led by Robert Waterhouse, SIB is engaged in an unprecedented effort to streamline data across molecular biology, health and biodiversity. SIB also federates the Swiss bioinformatics community of some 900 scientists, encouraging collaboration and knowledge sharing.
***
About Plazi:
Plazi is an association supporting and promoting the development of persistent and openly accessible digital taxonomic literature. To this end, Plazi maintains TreatmentBank, a digital taxonomic literature repository to enable archiving of taxonomic treatments; develops and maintains TaxPub, an extension of the National Library of Medicine / National Center for Biotechnology Informatics Journal Article Tag Suite for taxonomic treatments; is co-founder of the Biodiversity Literature Repository at Zenodo, participates in the development of new models for publishing taxonomic treatments in order to maximise interoperability with other relevant cyberinfrastructure components such as name servers and biodiversity resources; and advocates and educates about the vital importance of maintaining free and open access to scientific discourse and data. Plazi is a major contributor to the Global Biodiversity Information Facility.