Out of the dark: historical cave snail collection rediscovered in the attic

Stored in the attic for decades, the shell collection of Dominik Bilimek at BOKU University hides a plethora of untold narratives.

Guest blog post by Petra Lukeneder and Adrienne Jochum

During the past years, interest in the processing and preservation of historical, scientific collections has increased significantly. Fascinating and obscure treasures are stored along with their individual stories while splendid and exciting specimens eke out an existence in boxes and cellars. The scientific curation of the Dominik Bilimek (1813-1884) Collection at BOKU University (Vienna, Austria) is one such example. Stored in the attic for many decades, later stashed in the basement, surviving two floods, a plethora of untold narratives unfolded as the specimens were unpacked. For example, the story of the young, aspiring, Slovenian collector and researcher, Heinrich Hauffen (1836-1866), with his special interests in speleology and the fauna inhabiting the subterranean realm come to light.

A grainy black-and-white photograph of a bearded man.
The only known photograph of collector and naturalist Heinrich Hauffen (1836-1866) (Digital Library of Slovenia; reference number 5S74D58Z).

At first, it was just a label type in the collection that differed from the others. It was a multidisciplinary process to assign it to Hauffen. At that time, only few scientists were concerned with the genus Carychium, including Georg von Frauenfeld (1807-1873), Heinrich Freyer (1802-1866), and Meinrad Thaurer von Gallenstein (1811-1872), all of whom were names that were closely linked to Bilimek and his collection. Fortunately, Hauffen’s handwriting could be identified by using original manuscripts from the Archive of the National Museum of Slovenia.

In our work published in Subterranean Biology, we present our results on the rediscovery of historical material of Heinrich Hauffen, which turned out to be original material, that he used to describe the cave snail taxa Carychium reticulatum and Carychium reticulatum bidentatum. Today, the eastern Alpine and  the Dinaric subterranean members of the genus Carychium are assigned to their own genus, Zospeum, based on their troglobiontic characteristics such as lack of eyes, colourless bodies, genetic data, and their totally different shell morphology.

A photograph of a tiny white snail attached to a rocky surface, with a yellow arrow to indicate the location of the snail
Live animal, indicated by the yellow arrow, of the genus Zospeum from Krska jama cave in Slovenia. The snail’s shell appears almost to be translucent.

This interdisciplinary work not only includes historical aspects, but also a collaboration with the Natural History Museum Vienna and the Department of Evolutionary Biology (University of Vienna) in conjunction with the taxonomic expertise from the Natural History Museum Bern (Bern, Switzerland), the Senckenberg Research Institute and Natural History Museum (Frankfurt am Main, Germany) and from the Zoologische Staatssammlung München (Münich, Germany). By using light microscopy, X-ray Micro-CT data and SEM in sync with Hauffen’s original figures and handwritten documents, the morphological analysis of C. reticulatum illustrates the degree of phenotypic variation on the shells of individuals from two different cave populations of the species Zospeum spelaeum. The species Carychium bidentatum is considered a junior synonym of Zospeum costatum.

Photographs of people taking samples from caves.
Cave snail collection during field work in Slovenia and Spain.

The genus Zospeum constitutes a radiation of minute, glassy troglobitic snails (Ellobioidea) endemic to the Eastern Alps and the Dinaric Alps, extending as far west as Lake Garda in Italy and as far south as Montenegro. So far, 38 species of Zospeum have been described. Morphologically, the most informative diagnostic characters are apertural form and the degree of coiling and the shape of the columella (inner spindle) as well as the presence and configuration of the lamella in relation to it. In the Pre-Micro-CT era, one had to poke windows into the shells to view these signatory structures. Valuable material could become damaged, and many taxonomists shied from risky mishaps to assess the tiny shells (< 1.5 mm). This present work demonstrates the efficacy of fine-resolution imagery to assess valuable historic material.

A photograph of a woman walking past drawers of specimens
Archive of the Institute of Applied Geology (BOKU University), where the Bilimek Collection including Hauffen’s material, is being stored and processed. Photo by Radek Polách, Muzea Novojičínska.

Hauffen died at the age of 30 as part of the Austrian volunteer corps in Mexico – with the prospect of a permanent position at the Mexican National Museum. According to current knowledge, this is the reason why the Hauffen collection was passed on to Bilimek, who returned to Europe in 1867. There are still abundant specimens, often from localities that cannot longer be sampled nowadays, from Hauffen within the Bilimek collection. In the future, this part can hopefully be separated and scientifically processed as well.

Research article:

Lukeneder P, Ottner F, Harzhauser M, Winkler V, Metscher B, Ruthensteiner B, Jochum A (2024) Lost & Found – Rediscovery of H. Hauffen’s Carychium material in the Dominik Bilimek Collection, BOKU University, including a contemporary assessment within the genus Zospeum (Gastropoda, Ellobioidea, Carychiinae). Subterranean Biology 49: 97-116. https://doi.org/10.3897/subtbiol.49.130692

Orthoptera and origami: Pensoft at the International Congress of Entomology

Meeting our authors in person was a chance for us to gather valuable feedback and make sure we are doing our best.

The International Congress of Entomology 2024 (ICE2024), which took place on August 25-30 2024 in Kyoto, Japan, was arguably the biggest entomology event of the year. For the Pensoft team, it was an excellent chance to catch up with our authors and editors and discuss new partnerships.

At the Kyoto International Conference Center, entomologists visited lectures, symposia, and poster presentations, but they also enjoyed insect-themed haikus, origami, and artworks, and got to sample some edible insects.

Meeting our authors in person was a chance for us to gather valuable feedback and make sure we are doing our best to provide entomologists with a frictionless process that makes their published research shine.

At Stand 25, congress participants browsed the company’s open-access entomological journals, including ZooKeys, Biodiversity Data Journal, and Deutsche Entomologische Zeitschrift, as well as its wide range of books on insect diversity, systematics, and ecology.

Scientific illustrator Denitsa Peneva’s beautiful works adorned Pensoft’s stand; Mostafa Ghafouri Moghaddam, subject editor at ZooKeys and Biodiversity Data Journal and author at a number of Pensoft-published journals even got to take one of her prints home after winning a raffle that Pensoft organised. He won a beautiful illustration of Bombus fragrans on Trifolium pratense.

Pensoft’s founder and CEO and one of the founding editors of the company’s flagship journal ZooKeys, Prof. Lyubomir Penev, was there representing the company and meeting with fellow entomologists.

They also got the chance to learn about the ARPHA Platform, a next-generation publishing solution that offers a streamlined and efficient workflow for authors, reviewers, and editors.

At ICE2024, Pensoft also presented its newest open-access jorunal, Natural History Collections and Museomics. A peer-reviewed journal for research, discussion and innovation of natural history collections, NHCM will publish under a diamond open access model, allowing free access to published content without any fees for authors or readers.

In addition to its publishing endeavors, Pensoft also presented some of the EU-funded pollinator projects that it takes part in such as Safeguard, PollinERA, and WildPosh.

ICE2024 was a chance to advance entomological science and foster collaboration within the global scientific community. For those who missed the chance to connect with Pensoft in Kyoto, the company’s journals and platforms remain accessible online, offering opportunities to read and produce groundbreaking research in insect diversity and ecology.

Truffles and tulips: Pensoft and the 12th International Mycological Congress

Over 1,000 fungi enthusiasts gathered in Maastricht for the biggest mycology event of the year.

The Pensoft team had a fantastic time at the 12th International Mycological Congress in Maastricht, the Netherlands.

Organised by the International Mycological Association, together with the Dutch Mycological Society and the Westerdijk Fungal Biodiversity Institute, the four-day meeting saw around 1,400 fungi fanatics gather for the biggest mycology event of the year.

It all began with an opening ceremony complete with live music and stunning visuals, which set the stage for five days of research exchange and collaboration.

Pensoft welcomed faces new and old at a decorated stand featuring numerous illustrated materials designed by scientific illustrator Denitsa Peneva. Manning the stand were Prof Dr Lyubomir Penev (MycoKeys Founding Editor & Pensoft Founder and CEO) and Slavena Peneva (Pensoft Head of Graphic Design).

The booth hosted a special gathering for MycoKeys editors, including Editor-in-Chief Prof Dr Thorsten Lumbsch, who were shown a video looking back on the history of the journal. Many long-time collaborators of Pensoft, such as Prof Dr Urmas Kõljalg of Pluto F and Dr Dmitry Schigel of Pluto F, also dropped by to say hello.

The congress provided the perfect opportunity to announce Pensoft’s new, exciting partnership with the International Mycological Association. This collaboration will see the IMAFungus journal move to the ARPHA platform, where it will benefit from cutting-edge publishing technology and workflows.

Several MycoKeys contributors presented and hosted keynote lectures, bridging sessions, and workshops across the seven major topics of the conference:

  • Cell biology, biochemistry and physiology
  • Environment, ecology and interactions
  • Evolution, biodiversity and systematics
  • Fungal pathogenesis and disease control
  • Genomics, genetics and molecular biology
  • Applied Mycology
  • Nomenclature

The full program can be found on the congress website.

The next International Mycology Congress will be held in Incheon, South Korea, in 2027. IMC13 already has an active website and the Pensoft team look forward to another exciting installment!

***

Follow Pensoft on social media:

New Diamond OA journal Natural History Collections and Museomics launches on ARPHA Platform

Natural History Collections and Museomics (NHCM), a brand-new Diamond Open Access journal, has launched on ARPHA platform

The journal aims to serve as a leading platform for scholarly research, discussion, and innovation in the field of natural history collections worldwide and will be published by Pensoft Publishers

By promoting the exchange of knowledge between museum professionals, researchers, educators, and enthusiasts, the publication aims to foster a deeper understanding and appreciation of natural history and its significance in society. 

A Pensoft conference stand with a poster promoting the Natural History Collections and Museomics journal.
Natural History Collections and Museomics promoted by Pensoft at the 2024 International Congress of Entomology in Kyoto, Japan.

Natural History Collections and Museomics (NHCM) encourages interdisciplinary approaches and collaborations across fields such as taxonomy, conservation, education, ethics, and museum studies. The editorial team welcomes original research articles, reviews, case studies, methods, letters and perspectives addressing a wide range of topics related to natural history institutions and collections. 

The journal is supported by CETAF (Consortium of European Taxonomic Facilities), Europe’s leading voice for taxonomy and systematic biology. The support of this European network of scientific institutions ensures a robust and collaborative foundation for the journal’s academic endeavours.

By utilising a Diamond Open Access model, the journal allows free access to published content without any fees for authors or readers. This approach ensures that important research can reach the widest possible audience, promoting inclusivity and global collaboration in the field.

A strong Editorial Board is already in place, co-chaired by two distinguished scholars in the field. 

Dr Franco Andreone: Serving as the zoology curator at the Museo Regionale di Scienze Naturali in Turin, Italy, Dr Andreone is a renowned herpetologist with a profound impact on amphibian taxonomy, roles of natural history museums and conservation, particularly in Italy and Madagascar. His experience as a former Chair of the IUCN SSC Amphibian Specialist Group – Madagascar and his current role as a special advisor underscore his life-long dedication to preserving biodiversity.

Prof Shuqiang Li: A prominent Chinese arachnologist,  Prof Li brings his vast expertise in zoological systematics to the journal. Among many accomplishments, he led the construction of 29 natural history museums for the Chinese Academy of Sciences, one of which is an 8,800 square metre collection building to preserve more than 10 million specimens and another a 6,600 square metre public museum in the Zoological Institute in Beijing. As leading taxonomist and the Editor-in-Chief of Zoological Systematics, Professor Li has described more than 2,000 new species. His work on how Tethyan changes shaped diversification is most notable. His research has also revealed the origin of spider webs based multi-omics analyses.

The Board expects the team of subject (associate) editors to soon expand further, as they have been actively recruiting colleagues from diverse professional and geographical backgrounds. Experts in fields within the scope of the new journal are also invited to apply to join the NHCM team as either editors or reviewers. Conveniently, the respective application forms are made accessible from the journal website’s homepage.

“The journal Natural History Collections and Museomics will serve as a perfect forum and place to publish cutting-edge research.

“Natural history collections are gargantuan resources and tools to discover and preserve global diversity. We need to treat them as immense treasures to discover and describe new species and understand Earth’s marvels.”

Dr Franco Andreone and Prof Shuqiang Li, Editors-in-Chief.

“We are thrilled to launch Natural History Collections and Museomics on the ARPHA Platform. The importance of natural history collections cannot be overstated and we look forward to publishing valuable research to a wide audience.”

Prof Dr Lyubomir Penev, CEO and founder of Pensoft Publishers.

Submissions to the journal are now open. Researchers, scholars, and practitioners are invited to contribute articles to Natural History Collections and Museomics

For more information and submission guidelines, please visit the Natural History Collections and Museomics website.

You can also follow the journal on X and Facebook.

About ARPHA Platform:

ARPHA is a full-featured, end-to-end publishing platform for journals, books, conference materials and preprints. ARPHA offers flexible operating and business models, and a wide-range of automated and human-provided services. The ARPHA team places a special focus on its scholarly communication solutions designed to leverage the visibility and outreach of academic output, while promoting inclusivity and engagement.

About Pensoft:

Pensoft is an independent, open-access publisher and technology provider, best known for its biodiversity journals, including ZooKeys, Biodiversity Data Journal, Phytokeys, Mycokeys, One Ecosystem, Metabarcoding and Metagenomics and many others. Over the past 30 years, Pensoft has built a reputation for its innovations in the field, after launching ZooKeys: the very first digital-first scientific journal in zoology and the first to introduce semantic enrichments and hyperlinks within a biodiversity article. To date, the company has continuously been working on various tools and workflows designed to facilitate biodiversity data findability, accessibility, discoverability and interoperability.

Determinants of citation impact

Put together, formal parameters other than journal impact – such as the brevity of an article’s title – turned out to be stronger citation predictors.

Guest blog post by Jürgen Dengler

What makes a paper successful?” is something authors would like to know when submitting a manuscript and editors when deciding on the acceptance of papers. 

One answer is: “Write an exciting paper on a relevant topic with up-to-date methods”. 

While this is certainly true, most authors feel that this is not the whole truth. The enormous efforts some authors invest in getting their paper accepted in a “high-rank” journal reflect the belief that the publication venue influences the scientific impact of a paper. Other authors spend quite some time in finding a “fancy” title for their contribution.

But do such “formal” aspects actually influence the impact of articles and, if so, to which degree and which are the most relevant ones? 

Astonishingly, there is very little published evidence on these aspects. 

Thus, I conducted an empirical study using my own publication output over the years. With almost 200 papers in over 50 indexed journals, it already allows some generalisations. With the three IAVS journals, Journal of Vegetation Science, Applied Vegetation Science and Vegetation Classification and Survey, being among the preferred outlets, the journal portfolio is probably also quite similar to that of other IAVS members. 

As a common currency for citation impact, I used the Field-Weighted Citation Impact (FWCI), provided by the Scopus database. While the absolute number of citations is not suitable for a meaningful comparison between papers as the number of citations always increases with time since publication, FWCI standardised citations compared to all articles published in the same year in the same subject field and as the same article type (e.g. research article vs. review article). 

A FWCI of 1 means that an article is cited as much as the average, a FWCI of 2 refers to twice as many citations as an average article, etc. Scopus also provides a corresponding measure to FWCI at the journal level, namely the Source Normalized Impact per Paper (SNIP), which essentially is the mean of the FWCI values of all papers in that journal in the respective period.

According to the multiple regression analysis, journal impact (SNIP) was the strongest predictor of the article impact. 

However, alone it explained only 26.8% of the variance while other formal parameters together explained 31.5% of the variance. 

Among those, the brevity of the title was most influential. Each word less in the title led to 9% more citations. 

Further, both article length and author number had a positive influence on citations.

Publishing in a special feature increased the citation rate by 43%

By contrast, open access or formulating titles as questions or factual statements did not significantly influence citation rates.

In conclusion, selecting a high-impact journal has less influence on the article impact than many people believe – the citation impact of different articles in one journal typically varies more than the mean citation impact between different journals.

For authors, the easiest way to increase the impact of a given article is to shorten the title as much as possible. 

Caption: Variation of the Field-Weighted Citation Impact (FWCI) values of articles in journals represented by at least five articles in the analysed sample, with box height proportional to the number of included papers. All three IAVS journals were well represented. The variation of citation impact within individual journals was very large (note the log-scale of the x-axis). For example, the best cited articles of the author in JVS, AVS and VCS all had a considerably better citation performance than the single Nature paper co-authored by the author (FWCI = 3.70).

Associated journal article:

Dengler J (2024) Determinants of citation impact. Vegetation Classification and Survey 5: 169-177. https://doi.org/10.3897/VCS.126956.

***

Originally published on the Vegetation Science Blog: Official blog post of the IAVS journals.

***

You can follow the Vegetation Classification and Survey (VCS) journal on X (formerly Twitter) and Facebook.

Uniting to advance amphibian and reptile conservation: the 10th World Congress of Herpetology

At the event, the Pensoft team met up with authors and editors, showcased its new communication materials, and sponsored a Best Talk award.

The 10th World Congress of Herpetology (WCH) took place on August 5-9, 2024, in Kuching, Malaysia. Maria Kolesnikova, Pensoft’s marketing and sales manager, attended the event, connecting with many current and prospective authors and editors at Pensoft journals.

Maria Kolesnikova standing at Pensoft's booth.

Throughout the congress, our stand attracted numerous visitors, including many editors of our journals, such as Herpetozoa and ZooKeys. The opportunity to connect with our editors in person was invaluable, reinforcing the collaborative spirit that drives our publishing efforts. In addition, many of the authors in our journal visited the Pensoft stand to see their papers in print.

Many of our editors participated actively in the congress, delivering talks that highlighted cutting-edge research in herpetology.

Luis Ceríaco, author and editor at ZooKeys, presented a talk called “The herpetological results of Alexandre Rodrigues Ferreira’s ‘Philosophical Voyage’ to Brazil (1783–1792)”, where he talked about a huge expedition to explore the Amazon and Cueva rivers.

Umilaela Arifin, subject editor at Zoosystematics and Evolution, delivered a presentation called, “Hang’in there! Toward stabilising phylogeny of Asian ranids with gastromyz ophorous tadpoles,” where she talked about Sumaterana, a new genus that has been identified with gastromyz tadpoles in Sumatra.

Ben Wielstra, subject editor at Herpetozoa, presented to a fully packed hall on the balanced lethal system in Triturus newts.

Hanh Thi Ngo, author at Nature Conservation, gave a talk called “Diversity of karst – adapted bent-toed geckos in Laos and Vietnam.” Karst diversity is in great danger because of human activities in Vietnam, she said. There are publications on this topic in ZK & Nature Conservation by Hanh and Ziegler.

Scientific illustrator Denitsa Peneva has designed Pensoft’s new communication materials, centered around rich, colourful illustrations of species that have been featured in Pensoft’s journals.

Swati Nawani, doctoral researcher at the Wildlife Institute of India, won one of Denitsa’s amazing scientific illustration prints as part of a raffle organised by Pensoft. Swati has researched Himalayan amphibians since 2018.

In a commitment to support and celebrate excellence in herpetological research, Pensoft sponsored the Best reptile conservation talk award. For her talk, “Heat water and reptiles – do the hydro-thermal properties of animals at the source location persist at the translocation site?,” Deanne Trewartha won a free publication in either Herpetozoa or Nature Conservation, as well as another beautiful print by Denitsa Peneva.

The award presentation was a moment of celebration, and we are delighted to support the work of such inspiring researchers.

For Pensoft, the 10th World Congress of Herpetology was a chance to connect with our authors and editors and engage with the global herpetology community. Inspired by all the quality research presented there, we look forward to the next Herpetology Congress – and until then, we will continue publishing and promoting outstanding scientific work.

Eight years of ruin: the legacy of the Mariana dam disaster

Researchers explore the ongoing devastation caused by Brazil’s worst environmental disaster.

Eight years since the collapse of the Fundão tailings dam in Mariana, Brazil, researchers have highlighted ongoing environmental and social devastation caused by the disaster.

A paper published in our open-access journal Nature Conservation underscores the persistent and growing impacts of the collapse, which ranks as one of the world’s most significant environmental tragedies.

Several dead fish on a muddy river bank with a forest in the background.
Dead fish in Marliéria, Minas Gerais, Brazil, about 200 km downstream from the Fundão tailings dam. Photo credit: Elvira Nascimento.

Caused by the Samarco mining company, the 2015 collapse released approximately 50 million cubic meters of toxic mud, burying the village of Bento Rodrigues and severely contaminating over 600 kilometres of river channels and coastal habitats. More than 1 million people across 35 cities were affected, leading to 19 deaths, widespread health issues, and the displacement of hundreds of residents.

A village, destroyed by the Mariana dam disaster, covered in mud.
The village of Bento Rodrigues after the disaster. Photo credit: Rogério Alves/TV Senado.

According to researchers, the environmental damage has only intensified over the years. High levels of heavy metals continue to threaten human and wildlife health, with significant bioaccumulation observed in endangered species like the Franciscana dolphin. Additionally, the disaster caused the introduction of numerous invasive species, further destabilising the ecosystem.

The paper, led by Dr Cássio Cardoso Pereira and Fernando Goulart of Universidade Federal de Minas Gerais, criticises the slow and controversial response by the Renova Foundation, an entity created by the responsible companies to address the disaster’s aftermath. While some compensation and restoration efforts have been made, the researchers argue that these actions are insufficient and often inadequate.

A Brief History of: The Mariana Disaster by Plainly Difficult.

One of the most concerning findings, they say, is the ongoing risk posed by similar structures across Brazil, where hundreds of dams remain in poor condition. The study advocates for the replacement of these dangerous dams with safer alternatives like dry mining, which significantly reduces the risk of future collapses.

“Urgent, science-based public policies are needed that prioritise the restoration of the Rio Doce basin, in addition to comprehensive compensation for affected communities. To achieve this, we need collaborations involving local and government oversight and independent scientific expertise to prevent further ecological and human disasters.”

Dr Cássio Cardoso Pereira.
Read a guest blog post by Dr Cássio Cardoso Pereira exploring whether biodiversity loss is being overlooked because of climate change.

As the region continues to face the compounded effects of climate change, with increasing cyclones and heavy rains worsening the spread of pollutants, the paper reminds us that the legacy of the Fundão disaster is far from over.

Original source

Pereira CC, Fernandes S, Fernandes GW, Goulart FF (2024) Eight years after the Fundão tailings dam collapse: chaos on the muddy banks. Nature Conservation 56: 77-82. https://doi.org/10.3897/natureconservation.56.133441

***

Follow Nature Conservation on Facebook and X.

Will climate change lead to the extinction of a newly discovered tarantula species?

The remarkable new species is endemic to the Chiricahua Mountains and is predominately distributed in mid- to high-elevation forests.

A new species of tarantula spider, Aphonopelma jacobii, has been discovered from the Chiricahua Mountains in southeastern Arizona. This small, black and grey tarantula species has fiery red hairs on its abdomen and can be found in the high-elevation habitats of the Chiricahua Mountains, where it survives through bitterly cold winters.

A photo of two small Aphonopelma jacobii standing against each other against a backdrop of foliage.
A male and a female Aphonopelma jacobii. Their small size can be seen when compared to the acorn cap, pine needles, and oak leaf. Photo by Brent E. Hendrixson

The discovery was rather unexpected. “We often hear about new species being discovered from remote corners of Earth, but it is remarkable that these spiders are found in our own backyard, albeit in somewhat difficult-to-access areas of our backyard,” said Dr. Chris Hamilton, assistant professor at the University of Idaho and co-lead author of a study in ZooKeys that reports on the spider. “With Earth in the midst of a human-mediated extinction crisis, it is astonishing how little we know about our planet’s biodiversity, even for conspicuous and charismatic groups such as tarantulas.”

A photo of a female Aphonopelma jacobii.
A mature female Aphonopelma jacobii. Photo by Brent E. Hendrixson

The Chiricahuas, renowned for their exceptional biodiversity and high levels of endemism, compose part of the Madrean Archipelago (colloquially referred to as the Madrean Sky Islands), a complex of forested mountain ranges that span the cordilleran gap between the Colorado Plateau and Rocky Mountains in the southwestern United States and the Sierra Madre Occidental in northwestern Mexico. These montane forest “islands”—separated from each other by low-elevation deserts and arid grasslands—have evolved in isolation, leading to the origin of numerous short-range endemic species, and resulting in a mosaic of biodiversity unlike that of any other region in the United States.

A photo of a mature male Aphonpelma jacobii on foliage.
A mature male Aphonpelma jacobii. Photo by Brent E. Hendrixson

The forests where these tarantulas live are threatened by several factors, perhaps most notably from climate change. Recent studies in the sky island region suggest that these forests will be “pushed off” the mountains over the next several decades as temperatures and precipitation continue to increase and decrease, respectively. Organisms adapted to these cooler and more humid mountain tops—such as these spiders—will likely become extinct as suitable habitat disappears.

Dr. Brent Hendrixson, professor at Millsaps College and co-lead author of the study adds, “These fragile habitats are also threatened by increased exurban development in the San Simon Valley and Portal areas, destructive recreational activities, and wildfires. In addition, there is some concern that these tarantulas will be exploited for the exotic pet trade due to their rarity, striking coloration, and docile disposition. We must consider the impact that unethical collectors might have on these spiders when determining the threats to this species and the implications for its conservation.”

A photo of a coniferous forest in front of mountains.
A photograph of Aphonopelma jacobii‘s habitat high up in the Chiricahua Mountains. Photo by Michael A. Jacobi

Aphonopelma jacobii is named after Michael A. Jacobi, who helped find several of the first specimens which led to the description of this new species.

“This discovery represents the 30th species of tarantula documented from the United States. Aphonopelma is the most species diverse tarantula genus on the planet (at least for documented species). Our research adds to this number and continues to advance our understanding of the true species diversity in this incredibly interesting and important biodiversity hotspot,”Dr. Hamilton says in conclusion.

Research article:

Hamilton CA, Hendrixson BE, Silvestre Bringas K (2024) Discovery of a new tarantula species from the Madrean Sky Islands and the first documented instance of syntopy between two montane endemics (Araneae, Theraphosidae, Aphonopelma): a case of prior mistaken identity. ZooKeys 1210: 61-98. https://doi.org/10.3897/zookeys.1210.125318

Assessing the impact of invasive plants on ecosystems: a new framework

By combining several new advancements, the framework will aid in the management of plant invasions.

Invasive plant species pose a major threat to biodiversity and ecosystem health worldwide. However, predicting the exact impact of these invasions is challenging due to the complexity of interactions between invading species, native communities, and impacted ecosystems.

To combat this issue, researchers from the University of Freiburg and Justus Liebig University Giessen have developed a framework to better assess the impact of invasive plant species on ecosystems.

Outlined in a study published in the open-access journal NeoBiota, the framework combines new technologies and techniques to learn and predict how invasive plants alter ecosystems over time and in different environments.

Animated model visualisation of spatial-temporal dynamics of invader impacts. Click here to download a detailed explanation of the model.

The new framework integrates several modern advancements:

Environmental mapping: Progress in remote sensing and ecological monitoring allow researchers to capture detailed information about the environmental conditions of invaded areas. Drones, satellites, and advanced sensory networks can be used to create detailed ecosystem maps, which show how invasive species interact with their environment.

Functional tracers: These are specific indicators that reflect changes in ecosystem functions caused by invasive species. For example, researchers can track the impact of nitrogen-fixing invasive plants on ecosystems using nitrogen isotopes.

Spatio-temporal modelling: By combining environmental data with new modelling techniques, such as AI, researchers can create detailed models showing the spread and impact of invasive species on ecosystems over time. Such models can predict how changes in environmental conditions, such as climate change, might influence an invasive species’ success.

Infographic showing the mechanisms that determine the impact of invasive plants on ecosystems.
Mechanisms determining plant invasion impact.

Beyond scientific analysis, novel technologies also facilitate communication of ecological impacts, as the authors demonstrate in an animated 3D-video visualisation.

“The framework we’ve introduced offers researchers deeper insights into how invasive plant species interact with their environments, enabling more targeted management to lessen their ecological impact. We advocate for stronger collaboration between ecologists and technical experts to refine and expand these methods.

“Going forward, further research and integration of the wide range of recent methods and tools are needed to enhance the framework’s effectiveness.”

The research team behind the new framework: Christiane Werner, Christine Hellmann and André Große-Stoltenberg.

Original source

Werner C, Hellmann C, Große-Stoltenberg A (2024) An integrative framework to assess the spatio-temporal impact of plant invasion on ecosystem functioning. NeoBiota 94: 225-242. https://doi.org/10.3897/neobiota.94.126714

Follow NeoBiota on X and Facebook.

Starved and hunted: the cruel reality of lion farming in South Africa revealed

Whistleblowers have exposed the controversial industry fuelling the illegal international trade of big cat bones.

South Africa’s lion farming industry is rife with cruelty and is fuelling the illegal international trade of big cat bones, according to a new research paper published in the scientific journal Nature Conservation.

The study by World Animal Protection is based on direct interviews with whistleblowing workers at two closed-access lion facilities in South Africa’s North West Province.

According to the report, legal activities such as commercial captive lion breeding and canned hunting – the hunting of captive-bred wild animals in small, fenced enclosures with no chance of escape – are being used to mask involvement in the illegal international trade of lion and tiger bones.

Four young lions behind a fence.
Lions at a commercial breeding facility in South Africa (not from the study).

Several animal welfare violations were also reported, including malnutrition, lack of clean water, filthy enclosures and animals being deliberately starved throughout the low-hunting season.

Illegal hunting practices abound, including animals being drugged and hunted within an hour of release in enclosures that violate legal minimum size requirements.

Finally, the whistleblowers reported hazardous conditions for workers at the facilities, and suggested there may be shifts towards commercial exploitation of other felid species like tigers which could be used as substitutes in the bone trade.

It is estimated that between 8,000-12,000 lions and other big cats, including tigers, are bred and kept in captivity in more than 350 facilities across the country. To evade detection during professional inspections, farm owners use various strategies, such as security cameras, patrols, and messaging apps.

“Our study highlights the troubling reality of South Africa’s captive lion industry. Legal activities are being exploited to facilitate illegal trade, and this is compounded by serious animal welfare violations and unsafe conditions for workers. Urgent action is needed to protect lions and people.”

Lead researcher Dr Angie Elwin, Research Manager at World Animal Protection.

Although the commercial captive breeding and canned hunting of lions remains legal, though poorly regulated in South Africa, the export of lion skeletons – including claws and teeth – was declared unconstitutional by the South African High Court in 2019.

In 2021, the South African Government announced its intention to immediately halt the “domestication and exploitation of lions, and to ultimately close all captive lion facilities in South Africa”.

However, a lack of enforcement of regulations and clarity on the future of the industry, has left a legal grey area, enabling some farms to operate what on the surface appear to be legitimate captive breeding and ‘canned’ trophy hunting businesses – but which in reality supply the illegal international big cat bone trade facilitated by organised crime gangs.

In light of these revelations, the study calls for the South African Government to implement a comprehensive and well-managed plan to transition away from current practices in the captive lion industry. Key recommendations include:

  • Full Audit of the Industry: To ensure all commercial captive lion farms are officially registered and compliant with regulations until the industry is phased out.
  • Breeding Moratorium: Establishment of an immediate moratorium on breeding to prevent further growth of the commercial captive lion population.
  • Prevention of Bone Stockpiling: Development and enforcement of plans to prevent the accumulation of lion bones, which risks fuelling the illegal international lion bone trade.
  • Phase out Plan: Enactment of a time-bound strategic plan to phase out the captive lion farming industry, ensuring ethical treatment of animals and safety for workers.

The South African Government must take immediate action to fulfil its public pledge to end the controversial captive lion industry. Without a comprehensive time-bound plan and stringent enforcement, this commercial industry will continue to pose significant legal, animal cruelty, and conservation concerns.

Senior researcher Dr Neil D’Cruze, Head of Wildlife Research at World Animal Protection.

This study serves as a crucial call to action for both the South African Government and the international community to address and resolve the complex issues surrounding the captive lion industry.

The publication comes at a time when South African NGO Blood Lions encourages the public to raise their voice by sharing the 2024 World Lion Day “You’re killing them softly” campaign message, aimed at informing tourists and visitors to lion farms about the hidden suffering and cruelty involved, and to sign this petition urging the South African government among others to extend the ban on captive lion breeding and trading to other predators.

Original source:

Elwin A, Asfaw E, D’Cruze N (2024) Under the lion’s paw: lion farming in South Africa and the illegal international bone trade. Nature Conservation 56: 1–17. https://doi.org/10.3897/natureconservation.56.124555

***

Follow Nature Conservation on Facebook and X.