Assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators: Pensoft joins WildPosh

Pensoft is amongst the participants of a new Horizon Europe project aiming to better evaluate the risk to wild pollinators of pesticide exposure, enhancing their health & pollination services.

Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by these disturbances are pollinators, which face multiple threats, driven to a huge extent by the spread of anthropogenic chemicals, such as pesticides. 

WildPosh (Pan-european assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators) is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of the risk to wild pollinators of pesticide exposure, and enhance the sustainable health of pollinators and pollination services in Europe.

On 25 and 26 January 2024, project partners from across Europe met for the first time in Mons, Belgium and marked the beginning of the 4-year endeavour that is WildPosh. During the two days of the meeting, the partners had the chance to discuss objectives and strategies and plan their work ahead. 

This aligns with the objectives of the European Green Deal and EU biodiversity strategy for 2030, emphasising the need to reduce pollution and safeguard pollinators. WildPosh focuses on understanding the routes of chemical exposure, evaluating toxicological effects, and developing preventive measures. By addressing knowledge gaps in pesticide risk assessment for wild pollinators, the project contributes to broader efforts in biodiversity conservation.

During the kick-off meeting in Mons, WildPosh’s project coordinator Prof. Denis Michez (University of Mons, Belgium) gave an introductory presentation.

As a leader of Work Package #7: “Communication, knowledge exchange and impact”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels in order to inform stakeholders about the results from WildPosh and raise further public awareness of wild and managed bees’ health.

Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that WildPosh is set to follow for the next four years.

“It is very exciting to build on the recently concluded PoshBee project, which set out to provide a holistic understanding of how chemicals affect health in honey bees, bumble bees, and solitary bees, and reveal how stressors interact to threaten bee health. WildPosh will continue this insightful work by investigating these effects on wild pollinators, such as butterflies, hoverflies and wild bee species, with the ultimate goal of protecting these small heroes who benefit the well-being of our planet,”

says Teodor Metodiev, WildPosh Principal Investigator for Pensoft.

For the next four years, WildPosh will be working towards five core objectives: 

1) Determine the real-world agrochemical exposure profile of wild pollinators at landscape level within and among sites 

2) Characterise causal relationships between pesticides and pollinator health 

3) Build open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenario

4) Propose new tools for risk assessment on wild pollinators

5) Drive policy and practice.


Consortium:

The consortium consists of 17 partners coming from 10 European countries. Together, they bring extensive experience in Research and Innovation projects conducted within the Horizon programmes, as well as excellent scientific knowledge of chemistry, modelling, nutritional ecology, proteomics, environmental chemistry and nutritional biology.

  1. University of Mons
  2. Pensoft Publishers
  3. Eesti Maaülikool (Estonian University of Life Sciences)
  4. BioPark Archamps
  5. French National Agency for Food, Environmental and Occupational Health & Safety
  6. French National Centre for Scientific Research
  7. Martin Luther University Halle-Wittenburg
  8. Albert Ludwigs University Freiburg
  9. UFZ Helmholtz Centre for Environmental Research
  10. University of Turin
  11. Italian National Institute of Health
  12. National Veterinary Research Institute – State Research Institute
  13. University of Novi Sad Faculty of Sciences
  14. University of Novi Sad, BioSense Institute-Research Institute for Information Technologies in Biosystems
  15. University of Murcia
  16. Royal Holloway and Bedford New College
  17. The University of Reading

Visit can follow WildPosh on X/Twitter (@WildPoshProject), Instagram (/wildposhproject) and Linkedin (/wildposh-eu)

Smithsonian’s Dr Torsten Dikow appointed Editor-in-Chief of ZooKeys

Dikow, an esteemed entomologist specialising in Diptera and cybertaxonomy, is the new Editor-in-Chief of the leading scholarly journal in systematic zoology and biodiversity

Esteemed entomologist specialising in true flies (order Diptera) and cybertaxonomy, Dr Torsten Dikow was appointed as the new Editor-in-Chief of the leading open-access peer-reviewed journal in systematic zoology and biodiversity ZooKeys.

Dikow is to step into the shoes of globally celebrated fellow entomologist and colleague at the Smithsonian and founding Editor-in-Chief of ZooKeys Dr Terry Erwin, who sadly passed away in May, 2020, leaving behind hefty scientific legacy and immeasurable admiration and fond memories

Today, Dikow is a Research Entomologist and Curator of Diptera and Aquatic Insects at the Smithsonian National Museum of Natural History (Washington, DC, USA), where his research interests encompass the diversity and evolutionary history of the superfamily Asiloidea – or asiloid flies – comprising curious insect groups, such as the assassin flies / robber flies and the mydas flies. Amongst an extensive list of research publications, Dikow’s studies on the diversity, biology, distribution and systematics of asiloid flies include the description of 60 species of assassin flies alone, and the redescription of even more through comprehensive taxonomic revisions.

Dikow obtained his M.S. in Zoology from the Universität Rostock (Germany) and Ph.D. in Entomology from Cornell University (New York, USA) with three years of dissertation research conducted at the American Museum of Natural History (AMNH). 

During his years as a postdoc at the Field Museum (Illinois, USA), Dikow was earnestly involved in the broader activities of the Encyclopedia of Life through its Biodiversity Synthesis Center (BioSynC) and the Biodiversity Heritage Library (BHL). There, he would personally establish contacts with smaller natural history museums and scientific societies, and encourage them to grant digitisation permissions to the BHL for in-copyright scientific publications. Dikow is a champion of cybertaxonomic tools and making biodiversity data accessible from both natural history collections and publications. He has been named a Biodiversity Open Data Ambassador by the Global Biodiversity Information Facility (GBIF).

Dikow is no stranger to ZooKeys and other journals published by the open-access scientific publisher and technology provider Pensoft. For the past 10 years, he has been amongst the most active editors and a regular author and reviewer at ZooKeysBiodiversity Data Journal and African Invertebrates.

“Publishing taxonomic revisions and species descriptions in an open-access, innovative journal to make data digitally accessible is one way we taxonomists can and need to add to the biodiversity knowledge base. ZooKeys has been a journal in support of this goal since day one. I am excited to lend my expertise and enthusiasm to further this goal and continue the development to publish foundational biodiversity research, species discoveries, and much more in the zoological field,”

said Dikow.

Dikow took on his new role at ZooKeys at a time when the journal had just turned 15 years on the scholarly publishing scene. In late 2020, the scientific outlet also marked the publication of its 1000th journal volume.

***

Visit the journal’s website and follow ZooKeys on X (formerly Twitter) and Facebook. You can also follow Torsten Dikow on X.

***

About ZooKeys:

ZooKeys is a peer-reviewed, open-access, rapidly disseminated journal launched to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. ZooKeys aims to apply the latest trends and methodologies in publishing and preservation of digital materials to meet the highest possible standards of the cybertaxonomy era.

ZooKeys publishes papers in systematic zoology containing taxonomic/faunistic data on any taxon of any geological age from any part of the world with no limit to manuscript size. To respond to the current trends in linking biodiversity information and synthesising the knowledge through technology advancements, ZooKeys also publishes papers across other taxon-based disciplines, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics, etc. 

Conferences across the continents: Pensoft’s events in Autumn 2023

Pensoft participated in several events all around the world in October and November 2023.

October and November 2023 were active months for the Pensoft team, who represented the publisher’s journals and projects at conferences in Europe, North America, South America, Oceania and Asia.

Let’s take a look back at all the events of the past two months.

The Biodiversity Information Standards Conference 2023

The Biodiversity Information Standards (TDWG) Conference, held from October 9-13 in Tasmania, Australia, brought together experts and stakeholders from the global biodiversity research community.

The annual gathering is a crucial platform for sharing insights, innovations, and knowledge related to biodiversity data standards and practices. Key figures from Pensoft took part in the event, presenting new ways to improve the management, accessibility, and usability of biodiversity data. 

Prof. Lyubomir Penev, founder and Chief Executive Officer of Pensoft, gave two talks that highlighted the importance of data publishing. His presentation on “The Biodiversity Knowledge Hub (BKH): A Crosspoint and Knowledge Broker for FAIR and Linked Biodiversity Data” underscored the significance of FAIR (Findable, Accessible, Interoperable, and Reusable) data standards. BKH is the major output from the Horizon 2020 project BiCIKL (Biodiversity Community Integrated Knowledge Library) dedicated to linked and FAIR data in biodiversity, and coordinated by Pensoft.

Prof. Lyubomir Penev, Pensoft founder and CEO.

He also introduced the Nanopublications for Biodiversity workflow and format: a promising new tool developed by Knowledge Pixels and Pensoft to communicate key scientific statements in a way that is human-readable, machine-actionable, and in line with FAIR principles. Earlier this year, Biodiversity Data Journal integrated nanopublications into its workflow to allow authors to share their findings even more efficiently.

Chief Technology Officer of Pensoft Teodor Georgiev contributed to the conference by presenting “OpenBiodiv for Users: Applications and Approaches to Explore a Biodiversity Knowledge Graph.” His session highlighted the innovative approaches being taken to explore and leverage a biodiversity knowledge graph, showcasing the importance of technology in advancing biodiversity research.

Teodor Georgiev (right), Pensoft CTO.

Many authors and editors at Biodiversity Data Journal also spoke at the TDWG conference, including Vince Smith, the journal’s editor-in-chief, who is Head of Digital, Data, and Informatics at the Natural History Museum. He delivered insightful presentations on digitising natural science collections and utilising AI for insect collections.

GEO BON Global Conference 2023

GEO BON’s Global Conference on Biodiversity and Monitoring took place from 10-13 October 2023 in Montreal, Canada.

Metabarcoding and Metagenomics editor-in-chief, Florian Leese.

The theme of the conference was “Monitoring Biodiversity for Action” and there was particular emphasis on the development of best practices and new technologies for biodiversity observations and monitoring to support transformative policy and conservation action.

Metabarcoding & Metagenomics’ editor-in-chief, Florian Leese, was one of the organisers of the “Standardized eDNA-Based Biodiversity Monitoring to Inform Environmental Stewardship Programs” session. Furthermore, the journal was represented at Pensoft’s exhibition booth, where conference participants were able to discuss metabarcoding and metagenomics research.

Following the conference, Metabarcoding & Metagenomics announced a new special issue titled “Towards Standardized Molecular Biodiversity Monitoring.” The special issue is accepting submissions until 15th March 2024.

Asian Mycological Congress 2023

The Asian Mycological Congress welcomed researchers from around the world to Busan, Republic of Korea, for an exploration of all things fungi from 10-13 October. 

MycoKeys Best Talk award (winner not pictured).

Titled “Fungal World and Its Bioexploitation – in all areas of basic and applied mycology,” the conference covered a range of topics related to all theoretical and practical aspects of mycology. There was a particular emphasis on the development of mycology through various activities associated with mycological education, training, research, and service in countries and regions within Asia.

As one of the sponsors of the congress, Pensoft proudly presented a Best Talk award to Dr Sinang Hongsanan of Chiang Mai University, Thailand. The award entitles the winner to a free publication in Pensoft’s flagship mycology journal, MycoKeys.

Joint ESENIAS and DIAS Scientific Conference 2023

The ESENIAS and DIAS conference took place from 11-14 October and focused on “globalisation and invasive alien species in the Black Sea and Mediterranean regions.” Pensoft shared information on their NeoBiota journal and the important REST-COAST and B-Cubed projects.

Polina Nikova receiving the NeoBiota Best Talk Award.

Polina Nikova of the Bulgarian Academy of Sciences received the NeoBiota Best Talk Award for her presentation titled “First documented records in the wild of American mink (Neogale vision von Schreber, 1776) in Bulgaria.” The award entitles her to a free publication in the NeoBiota journal.

XII European Congress of Entomology

Pensoft took part in the XII European Congress of Entomology (ECE 2023) in Heraklion, Crete, from 16-20 October. The event provided a forum for entomologists from all over the world, bringing together over 900 scientists from 60 countries.

Carla Stoyanova, Teodor Metodiev and Boriana Ovcharova representing Pensoft.

The ECE 2023, organised by the Hellenic Entomological Society, addressed the pressing challenges facing entomology, including climate change, vector-borne diseases, biodiversity loss, and the need to sustainably feed a growing world population. The program featured symposia, lectures, poster sessions, and other types of activities aimed at fostering innovation in entomology. For Pensoft, they were a great opportunity to interact with scientists and share their commitment to advancing entomological research and addressing the critical challenges in the field.

Throughout the event, conference participants could find Pensoft’s team at thir booth, and learn more about the scholarly publisher’s open-access journals in entomology. In addition, the Pensoft team presented the latest outcomes from the Horizon 2020 projects B-GOOD, Safeguard, and PoshBee, where the publisher takes care of science communication and dissemination as a partner.

XIV International Congress of Orthopterology 2023

The XIV International Congress of Orthopterology, held from 16-19 October in Mérida, Yucatán, México, was a landmark event in the field of orthopterology.

Group photo of XIV International Congress of Orthopterology 2023 participants.

Hosted for the first time in Mexico, it attracted experts and enthusiasts from around the world. The congress featured plenary speakers who presented cutting-edge research and insights on various aspects of grasshoppers, crickets, and related insects.

Pensoft’s Journal of Orthoptera Research was represented by Tony Robillard, the editor-in-chief, who presented the latest developments of the journal to attendees.

Symposia, workshops, and meetings facilitated discussions on topics like climate change impacts, conservation, and management of Orthoptera. The event also included introductions to new digital and geospatial tools for Orthoptera research.

The 16th International Conference on Ecology and Management of Alien Plant Invasions

The 16th International Conference on Ecology and Management of Alien Plant Invasions (EMAPI 2023) took place in Pucón, Chile, from 23-25 October . The conference focused on the promotion of diversity in the science and management of biological invasions. Several NeoBiota authors ran sessions at the conference, and the journal also presented a Best Talk Award.

4th International ESP Latin America and Caribbean Conference

The 4th International ESP Latin America and Caribbean Conference (ESP LAC 2023) was held in La Serena, Chile, from 6-10 November. Focused on “Sharing knowledge about ecosystem services and natural capital to build a sustainable future,” the event attracted experts in ecosystem services, particularly from Latin America and the Caribbean.

Organised by the Ecosystem Services Partnership, this bi-annual conference was open to both ESP members and non-members, featuring a hybrid format in English and Spanish. Attendees enjoyed an excursion to La Serena’s historical center, adding a cultural dimension to the event.

The conference included diverse sessions and a special recognition by Pensoft’s One Ecosystem journal, which awarded full waivers for publication to the authors of the three best posters.

Magaly Aldave receiving the Best Poster Award.

Magaly Aldave of the Transdisciplinary Center for FES-Systemic Studies claimed first prize with “The voice of children in the conservation of the urban wetland and Ramsar Site Pantanos de Villa in Metropolitan Lima, Peru.” Ana Catalina Copier Guerrero and Gabriela Mallea-Rebolledo, both of the University of Chile, were awarded second and third prize respectively.

Biosystematics 2023

Biosystematics 2023, held from 26-30 November at the Australian National University in Canberra, was a collaborative effort of the Australian Biological Resources Study, Society of Australian Systematic Biologists, Australasian Mycological Society, and Australasian Systematic Botany Society. Themed “Celebrating the Past | Planning the Future,” the conference provided a platform for exploring advancements in biosystematics.

The event featured in-person and online participation, catering to a wide audience of researchers, academics, and students. It included workshops, presentations, and discussions, with a focus on enhancing understanding in biosystematics.

Pensoft awarded three student prizes at the event. Putter Tiatragu, Australian National University, received the Best Student Talk award and a free publication in any Pensoft journal for “A big burst of blindsnakes: Phylogenomics and historical biogeography of Australia’s most species-rich snake genus.”

Helen Armstrong, Murdoch University, received the Best Student Lightning Talk for “An enigmatic snapper parasite (Trematoda: Cryptogonimidae) found in an unexpected host.” Patricia Chan, University of Wisconsin-Madison, was the Best Student Lightning Talk runner-up for “Drivers of Diversity of Darwinia’s Common Scents and Inflorescences with Style: Phylogenomics, Pollination Biology, and Floral Chemical Ecology of Western Australian Darwinia (Myrtaceae).”

As we approach the end of 2023, Pensoft looks back on its most prolific and meaningful year of conferences and events. Thank you to everyone who contributed to or engaged with Pensoft’s open-access journals, and here’s to another year of attending events, rewarding important research, and connecting with the scientific community.

***

Follow Pensoft on social media:

Mysterious new moth species discovered in Europe

The moth, named Mirlatia arcuata, by a research team from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera of recent decades.

European Lepidoptera (butterflies and moths), with a currently known inventory of approximately 11, 000 species, are generally considered well-researched. However, a new genus and species from the Geometrid moth family described in the scientific journal ZooKeys tell a different story. The moth, named Mirlatia arcuata by a research team from Germany, Austria, and the United Kingdom, is one of the most remarkable discoveries in Lepidoptera of recent decades.

Decades-old UFO

In the early 1980s, Austrian amateur entomologist Robert Hentscholek collected three specimens of a moth species in southern Dalmatia, Croatia, which were integrated into his collection or given to colleagues without being identified. Decades later, the collection was sold to Toni Mayr, another hobbyist researcher from Austria, who immediately noticed the unusual insect that stood out from all known European species and couldn’t even be assigned to a known genus.

An adult female of Mirlatia arcuata.

The collector was contacted to provide more information, and it turned out that a male and a female specimen of the same species had been given to another collector who had since passed away. The female specimen was rediscovered in 2015 in the collection of the Natural History Museum in Vienna, while the whereabouts of the other specimen remained unknown. The unique male was finally presented to the Tyrolean Federal State Museums by Toni Mayr.

Light traps are set in Podgora, Croatia, in 2022. Photo by Stanislav Gomboc

In 2022, a research team was formed to identify this enigmatic moth, and it was finally described as a new genus and species in early November 2023. It was given the name Mirlatia arcuata, where Mirlatia is an aggregate of the stems of two Latin words that translate loosely as “bringing a surprise,” a reference to the surprising discovery of this curious new moth.

Cold-adapted or introduced?

Wing venation of a male Mirlatia arcuata.

The discovery of such a large and distinctive moth species in a well-explored region like southern Croatia might seem unlikely. However, according to researcher Peter Huemer of the Tyrolean State Museums (Ferdinandeum), who took part in the study, there was surprisingly little research conducted in that area during the moth’s flight season in March. “It’s possible that Mirlatia arcuata is a cold-adapted, winter-active species that would need to be sought in the middle of winter,” he says.

The hypothesis of introduction from other continents was discarded by the study authors for several reasons. Axel Hausmann from the Zoological State Collection in Munich examined all known moths from cold regions in the northern and southern hemisphere and could not identify a similar species from these regions. Furthermore, the collecting location in Podgora is not in close proximity to a port, and during the Yugoslavian era, the traffic in Dalmatian ports was rather limited. Also, Split and other Croatian ports were rarely visited by ships from other continents during the communist period. Additionally, Robert Hentscholek had never collected in the tropics, ruling out the possibility of a labeling error.

Many questions, few answers

Despite all efforts, the relationships of the new genus and species have not been definitively clarified. Even the assignment to the subfamily Larentiinae is not entirely secure and is based on a few features like wing venation. Initial genetic data from the mitochondrial COI barcode, as well as characteristics of the tympanal organ (auditory organ), point to a largely independent systematic position of the species. Further investigations of the entire genome could provide more clarity.

Habitat of Mirlatia arcuata in Podgora, Croatia. Photo by Stanislav Gomboc

Even less is known about the biology of the new species, apart from the fact that its known habitat consists of coastal rock biotopes with Mediterranean vegetation. In March 2022, Slovenian lepidopterologist Stane Gomboc initiated a comprehensive search, but it turned out to be unsuccessful. It’s possible that the moth’s flight season has already ended due to climate warming.

The study authors hope they will soon rediscover Mirlatia arcuata and know more about its habitat requirements and biology.

Research Article:

Hausmann A, László GM, Mayr T, Huemer P (2023) Surprising discovery of an enigmatic geometrid in Croatia: Mirlatia arcuata, gen. nov., sp. nov. (Lepidoptera, Geometridae). ZooKeys 1183: 99-110. https://doi.org/10.3897/zookeys.1183.110163

Follow ZooKeys on Facebook and X.

A decade of empowering biodiversity science: celebrating 10 years of Biodiversity Data Journal

Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Today, 16 September 2023, we are celebrating our tenth anniversary: an important milestone that has prompted us to reflect on the incredible journey that Biodiversity Data Journal (BDJ) has been through.

From the very beginning, our mission was clear: to revolutionise the way biodiversity data is shared, accessed, and harnessed. This journey has been one of innovation, collaboration, and a relentless commitment to making biodiversity data FAIR – Findable, Accessible, Interoperable, and Reusable.

Over the past 10 years, BDJ, under the auspices of our esteemed publisher Pensoft, has emerged as a trailblazing force in biodiversity science. Our open-access platform has empowered researchers from around the world to publish comprehensive papers that seamlessly blend text with morphological descriptions, occurrences, data tables, and more. This holistic approach has enriched the depth of research articles and contributed to the creation of an interconnected web of biodiversity information.

In addition, by utilising ARPHA Writing Tool and ARPHA Platform as our entirely online manuscript authoring and submission interface, we have simplified the integration of structured data and narrative, reinforcing our commitment to simplifying the research process.

One of our most significant achievements is democratising access to biodiversity data. By dismantling access barriers, we have catalysed the emergence of novel research directions, equipping scientists with the tools to combat critical global challenges such as biodiversity loss, habitat degradation, and climate fluctuations.

We firmly believe that data should be openly accessible to all, fostering collaboration and accelerating scientific discovery. By upholding the FAIR principles, we ensure that the datasets accompanying our articles are not only discoverable and accessible, but also easy to integrate and reusable across diverse fields.

As we reflect on the past decade, we are invigorated by the boundless prospects on the horizon. We will continue working on to steer the global research community towards a future where biodiversity data is open, accessible, and harnessed to tackle global challenges.

Ten years of biodiversity research

To celebrate our anniversary, we have curated some of our most interesting and memorable BDJ studies from the past decade.

  • Recently, news outlets were quick to cover a new species of ‘snug’ published in our journal.
  • This Golden Retriever trained to monitor hermit beetle larvae proved once again the incredible capabilities of our canine friends.
Teseo, the Golden Retriever monitoring hermit beetle larvae
  • Who could forget this tiny fly named after the former Governor of California?
  • Or this snail named after climate activist Greta Thunberg?
Craspedotropis gretathunbergae

New discoveries are always exciting, but some of our favourite research focuses on formerly lost species, back where they belong.

  • Like the griffon vulture, successfully reintroduced to Bulgaria after fifty years.

Citizen science has shown time and time again that it holds an important position in biodiversity research.

  • This group, for example, who found a beetle the size of a pinhead in Borneo.
“Life Beneath the Ice”, a short musical film about light and life beneath the Antarctic sea-ice by Dr. Emiliano Cimoli

We extend our heartfelt gratitude to our authors, reviewers, readers, and the entire biodiversity science community for being integral parts of this transformative journey. Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Follow BDJ on social media:

New grasshopper species from central Texas honor Willie Nelson and Jerry Jeff Walker

These findings highlight the rich biodiversity of the region, emphasizing the importance of conservation efforts in the area.

A group of researchers from the Mississippi Entomological Museum taking break after exploring a site in Texas for grasshoppers. Left to right: Brady Dunaway, JoVonn Hill, Matthew Thorn. Photo by JoVonn Hill

The central region of Texas is a known hotspot of biological wonders. For the last five years, Dr. JoVonn Hill, an Assistant Professor and Director of the Mississippi Entomological Museum (MEM) at Mississippi State University, and his colleagues have made scientific expeditions to the area that have now revealed an extraordinary find.

The team uncovered seven previously unknown flightless grasshopper species, six of them endemic to the Edwards Plateau, which underscores the region’s extraordinary biodiversity.

With this discovery, Dr. Hill is paying tribute to two iconic musicians. In recognition of the “immense contributions” of Texas legends Willie Nelson and Jerry Jeff Walker, he has named two of these flightless grasshopper species after them.

Melanoplus nelsoni held by Dr. JoVonn Hill. Photo by JoVonn Hill

Melanoplus nelsoni and Melanoplus walkeri immortalize the enduring contributions of these legendary musicians and their connection to Texas,” he says.

Melanoplus walkeri.

“After these last few summers [of field studies], just like Mr. Nelson, we too have a little Texas in our souls,” he writes in his study, which was just published in the journal ZooKeys.

On Melanoplus walkeri, he writes: “Walker’s songs such as Hill Country Rain, Leavin’ Texas, and Sangria Wine brought me and my field team joy while traveling between field sites and added to the amazing ambiance of the Edwards Plateau.” In fact, the artist recorded his most influential album not far away from the spot where the new species was discovered.

Additionally, the team acknowledges the cultural heritage and deep connection to the region of the Comanche and Tonkawa tribes, naming two species after them, Melanoplus commanche and Melanoplus tonkawa respectively.

“These designations recognize the profound historical and cultural significance of the tribes in the region,” Dr. Hill explains.

Melanoplus tonkawa.

“These seven newly described species, alongside two preexisting ones, form a cohesive species group, highlighting their shared characteristics and evolutionary relationships,” Dr. Hill says in conclusion. “The formation of this new species group presents a significant contribution to our understanding of the diverse ecosystems present in central Texas,” he adds.

Melanoplus commanche.

The discovery of these seven flightless grasshopper species and the formation of a new species group underscore the ecological uniqueness of central Texas, Dr. Hill says. He and the staff of the Mississippi Entomological Museum remain committed to scientific exploration and understanding, promoting the conservation of biodiversity, and inspiring a sense of wonder and appreciation for the natural world.

Research article:

Hill JG (2023) Diversification deep in the heart of Texas: seven new grasshopper species and establishment of the Melanoplus discolor species group (Orthoptera, Acrididae, Melanoplinae). ZooKeys 1165: 101-136. https://doi.org/10.3897/zookeys.1165.104047

New African Invertebrates issue celebrates the work of Dr Jason G. H. Londt

For more than 50 years, Londt has made a notable impact on South African and international entomology.

The latest issue published in African Invertebrates is a special one: it honours the career and achievements of South African entomologist Dr Jason G. H. Londt. In celebration of Londt’s prolific and inspiring work, the issue was published to coincide with his 80th birthday in 2023.

For more than 50 years, Londt has made a notable impact on South African and international entomology, collecting large numbers of Diptera and other insect orders. He has made outstanding contributions to the entomological research on flies, especially assassin or robber flies (Diptera, Asilidae), on hangingflies (Mecoptera, Bittacidae), and field collections of insects, primarily in South Africa.

Throughout his career, he has described more species of Afrotropical Asilidae and Bittacidae (Mecoptera) than any other author.

“Today, some 952 Asilidae species are recognised from southern Africa and thanks to Jason’s exceptional collecting efforts and detailed revisionary taxonomic publications these species can be easily identified,“ write African Invertebrates editors John Midgley and Torsten Dikow in the editorial to the Festschrift.

The Festschrift includes nine articles celebrating Dr Londt’s career by authors from three continents, covering the broad contributions that he has made to Afrotropical entomology. It also introduces five new species described in his honour, one hangingfly and four true flies.

***

For updates about African Invertebrates and its latest publications, follow the journal on Twitter and Facebook. You can also sign up for the journal’s newsletter from the Email alert panel accessible from the homepage.

The amazing diversity of the Caribbean pygmy jumping leaves

Pygmy grasshoppers come in many shapes and colors and are often exciting to see, but their taxonomy is a mess.

Guest blog post by Josip Skejo & Niko Kasalo

A lovable mess

Tetrigidae, commonly known as pygmy grasshoppers, are an ancient and diverse family, currently numbering about 2000 species. As their name suggests, tetrigids are very small; their largest representatives are barely several centimeters long, so they might be difficult to spot on a casual stroll through tropical vegetation. However, when they are spotted, they are immediately recognizable by their elongated pronotum, a hard structure that starts behind the head and covers the entire body like a hood. They come in many shapes and colors and are often exciting to see, but this comes with a price—the taxonomy of Tetrigidae, the way they are organized into natural groups, is a mess. This is where we come in.

In our latest paper, we dealt with Choriphyllini, a small Caribbean tribe that belongs to the subfamily Cladonotinae. This subfamily had been filling up with unrelated but similar-looking tetrigids for more than a century. It had never been clearly defined so almost everything wingless and robust was assigned to Cladonotinae. We decided to put an end to this by slowly removing the superficially similar genera from the subfamily and describing tribes to group the genera that are clearly related to each other. We piloted this system just last year, when we described the tribe Valalyllini from Madagascar, with only two endemic (and endangered) genera and species.

The diversity and the distribution of the tribe Valalyllini, the Malagasy dead-leaf-like Cladonotinae. Both species are endemic to small areas and are likely endangered because of deforestation. Both species most probably inhabit rainforest leaf litter.

Put the species of Choriphyllini and Valalyllini together, mix them up, and try to guess which belongs where—this is no simple task; they are all doing their impressions of dead leaves that our primate brains struggle to differentiate. And there’s more: such leaf-like grasshoppers live in Africa and South East Asia as well, and then there are those that look like twigs and spiky tree bark.

Only now that we have an idea of what the true Cladonotinae are can we be properly amazed by the duality they represent to us. On the one hand, they are incredibly diverse with every species having its own variation on the basic shape. On the other, they are so alike that they either represent the best example of convergent evolution ever documented or they all stem from a common ancestor that is currently supposed to have lived during the Mesozoic. The evolutionary history of Cladonotinae will take many years to unravel, but the work can only begin after we define what to call by that name.

Valalyllum folium, a member of the tribe Valalyllini, subfamily Cladonotinae. This species, endemic to Madagascar, is a relative of Choriphyllini.

It only took 250 years

The first species of Choriphyllini, Phyllotettix rhombeus, was described in 1765 as Cicada rhombea, that is, as a member of an entirely different order of insects. Continuing in this manner, many authors (including the great Linnaeus himself) made many taxonomic and nomenclatural mistakes that compounded over the centuries and made these grasshoppers difficult to identify and refer to. It didn’t help that new species and new records kept being reported without being contextualized by comprehensive literature reviews. Like detectives, we followed the scattered crumbs of data and arrived at a synthesis that will make future research in the region much more pleasant.

Hancock’s plate I from the “Tettigidae of North America” shows leaf-like Caribbean species under the numbers 1), 2) and 7), but has many taxonomic and nomenclatural errors. 1) – Phyllotettix foliatus (= female holotype of Hancock’s Choriphyllum foliatum), 2) – Phyllotettix rhombeus (= Hancock’s Choriphyllum westwoodi), 7) – Choriphyllum saussurei. (= Hancock’s Phyllonotus saussurei). Source: Biodiversity Heritage Library, available at https://www.biodiversitylibrary.org/item/25899#page/10.

This is not where interesting facts about Phyllotettix rhombeus stop. While looking through the literature, we tried to extract the measurements of drawings. Most of the drawings had a scale bar printed next to them, but the archaic usage of “lines” as the standard measurement initially gave us some trouble. That is why at first we doubted one of our most fascinating discoveries: with the pronotal length measuring nearly 3 centimeters, Phyllotettix rhombeus is the largest tetrigid ever recorded! Many, many authors dealt with this species over the last 250 years, but this record was never made explicit.

It should not go unnoticed now that its proposed common name is “Jamaican Colossal Jumping Leaf”. Inspired by this, we took the measurements of the other species as well and made a figure where all the specimens are resized to a common scale, which shows the diversity of both shapes and sizes.

The genera and species of the tribe Choriphyllini. All specimens are drawn to scale.

Besides P. rhombeus, there are three more species in the genus Phyllotettix: P. plagiatus, P. foliatus, and P. compressus. All four of them are known only from Jamaica. P. foliatus and P. compressus are known from the Blue Mountains, but for the other two no precise localities are known; we still don’t know where exactly the largest tetrigid lives. The other genus of the tribe is Choriphyllum, also with four species. Three of them, C. sagrai, C. saussurei, and C. wallaceum live in Cuba, while C. bahamense is all alone on Hummingbird Cay island in the Bahamas. The easiest way to differentiate these two genera is a little strange but practical, the tallest point of the leaf-like crest in Choriphyllum species is in the front, while in Phyllotettix species it is in the back.

A map of all known Choriphyllini records. For three species, not a single precise locality is known.

Some Caribbean leaves dance and jump

For each species, we proposed a common name as a means to give these animals even more character. Names, such as “Jamaican Bitten Jumping Leaf” and “Old Cuban Dancing Leaf” may not be “official”, but they have certainly found their audience. The tweet in which we shared the collage of all the species was viewed over 17000 times; everyone was amazed by the pretty shapes and some even noted that they especially liked the crazy common names. We were very glad to see our scientific and artistic package that is Choriphyllini be so warmly received.

Another hit on Twitter, with over 20000 views, is the post showcasing the newly-described species from Cuba, Choriphyllum wallaceum. The holotype of this species has been awaiting description for a long time. We found it in Museo Nacional de Ciencias Naturales in Madrid, Spain, with a note from Ignacio Bolívar, the father of the Tetrigidae classification system. He referred to it as “Choriphyllum Seoanei” but never managed to publish it.

This “new” species presented us with the perfect opportunity to honor the 200th anniversary of Alfred Russel Wallace’s birth. Wallace is often called the “father of biogeography” but is all too often neglected when discussing the origins of the theory of evolution, with which Charles Darwin is considered synonymous. Wallace, with his independent arrival at the key concepts of the evolutionary theory, his correspondence with Darwin, and his staunch defense of Darwin’s ideas, was (and is) at the very least equal to Darwin and deserves much more recognition than he currently gets.

Choriphyllum wallaceum, a newly-described species from Cuba, named after Alfred Russel Wallace.

This is just the start

Choriphyllini are a pretty package, but one that merely introduces the real problem. The history of this tribe is long, yet we have very few specimens to work with. Although we have an understanding of how morphology varies within species, P. compressus and P. foliatus are not only suspiciously similar to each other, but they also live in the same general area of the Blue Mountains. It remains to be seen if they are in fact a single species.

Much more pressing is that we have only a vague idea of where these animals live and how their populations are impacted by various factors such as human activity and climate change—we do not have a baseline against which to assess their conservation status. Then there is the fact that there are many more islands in the Caribbean, making the possibility of discovering new Choriphyllini species on them real and exciting. We can only guess what the future holds for these neglected animals.

Old Cuban Dancing Leaf (Choriphyllum sagrai) in its natural environment among the leaf litter in Cuba, photographed by Sheyla Yong.

The stage is set; everything we know about this group is laid out in the paper and now there is no path but forward. Research is expensive, dedication to this work takes a certain kind of soul, and everything takes time. It is our sincere hope that someone someday takes this further. The pygmy jumping leaves will wait for as long as they can, on their islands, hopping without a care in the world.

References:

Deranja M, Kasalo N, Adžić K, Franjević D, Skejo J (2022) Lepocranus and Valalyllum gen. nov. (Orthoptera, Tetrigidae, Cladonotinae), endangered Malagasy dead-leaf-like grasshoppers. ZooKeys 1109: 1-15. https://doi.org/10.3897/zookeys.1109.85565

Skejo J, Yong S, Bogić D, Kasalo N (2023) Caribbean pygmy jumping leaves (Tetrigidae, Cladonotinae, Choriphyllini). Deutsche Entomologische Zeitschrift 70(1): 129-141. https://doi.org/10.3897/dez.70.98982

Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Where did all those insects come from? Tracking the history of insect invasion in Chile

Going through centuries-old literature, researchers compiled a database of the exotic insects established in the country.

Guest blog post by Daniela N. López, Eduardo Fuentes-Contreras, Cecilia Ruiz, Sandra Ide, Sergio A. Estay

Understanding the history of non-native species arrivals to a country can shed light on the origins, pathways of introduction, and the current and future impacts of these species in a new territory. In this sense, collecting this information is important, and sometimes essential, for researchers and decision makers. However, in most cases, reconstructing this history takes a lot of work. Finding antique references is hard work. To add more complexities, changes in the taxonomy of species or groups could be frustrating as we try to track the moment when a species was referenced in the country for the first time, sometimes centuries ago. Of course, we only learned about these issues when, almost seven years ago, we thought that compiling a database for the exotic insects established in Chile would be interesting to people working on invasive species in the country.

Tremex fuscicornis caught in Chile. Photo by Sergio Estay

First, we collected information from physical and electronic books and journals available in our institutional libraries, but soon we noticed that we needed a more significant effort. In Chile, the National Library and The National Congress library allowed us to review and collect information from texts, in many cases, over a hundred years old. We also had to request information from foreign specialized libraries and bookstores. Sometimes, we had to negotiate with private collectors to buy antique books or documents. When we figured the first version of the database was ready, we began a second step for detecting errors, correcting the taxonomy, and completing the information about the reported species.

Ctenarytaina eucalypti individuals and damage in Chile. Photo by Sergio Estay

The analysis began when we finally completed the database. What types of questions could we answer using this data? Was the database complete enough to detect historical, biogeographic, and ecological patterns? Two competing hypotheses were the starting point for the study at this stage. On the one hand, the species that dominated the non-native insect assemblage could have come from original environmental conditions that matched Chile’s. Or, the pool of non-native insects arrived using pathways associated with the country’s economic activities, regardless of their origin.

We found records of almost 600 non-native insect species established in continental Chile. Most species corresponded to Hemiptera (true bugs and scales, among others) from Palaearctic origin and were linked to agriculture and forestry, as we initially hypothesized. These characteristics point to the central role of intercontinental human-mediated transport in structuring non-native insect assemblages in Chile. Non-native insect introductions began immediately after the arrival of Europeans to the central valley of Chile and have shown an enormous acceleration since 1950. Using data on the economic history of Chile, we can preliminary link this acceleration with the strong development in agriculture and forestry in Chile after World War II and the increase in intercontinental air traffic.

Exotic aphids in garden in Chile. Photo by Sergio Estay

The development and analysis of this database gave us some preliminary answers about the ecology of invasive insect species and opened the door to new questions. Also, this is a work in progress. We need the scientific community’s support to improve and correct the records, provide new reports and collect further references to support the database. Our data and analysis may be representative of other countries in South America. Similarities between our countries can facilitate using this information to manage recent introductions and prevent significant economic, social, or environmental damage.

Reference

López DN, Fuentes-Contreras E, Ruiz C, Ide S, Estay SA (2023) A bug’s tale: revealing the history, biogeography and ecological patterns of 500 years of insect invasions. NeoBiota 81: 183-197. https://doi.org/10.3897/neobiota.81.87362