Here’s to a year of growing and succeeding together!

Within and beyond our Pensoft team, we celebrate a year of well-nourished partnerships and excitement for the future

Yet another hectic year has passed for our team at Pensoft, so it feels right to look back at the highlights from the last 12 months, as we buckle up for the leaps and strides in 2025.

In the past, we have used the occasion to take you back to the best moments of our most popular journals (see this list of 2023 highlights from ZooKeys, MycoKeys, PhytoKeys and more!); share milestones related to our ARPHA publishing platform (see the new journals, integrations and features from 2023); or let you reminisce about the coolest research published across our journals during the year (check out our Top 10 new species from 2021).

In 2022, when we celebrated our 30th anniversary on the academic scene, we extended our festive spirit throughout the year as we dived deep into those fantastic three decades. We put up Pensoft’s timeline and finished the year with a New Species Showdown tournament, where our followers on (what was back then) Twitter voted twice a week for their favourite species EVER described on the pages of our taxonomic journals.

Spoiler alert: we will be releasing our 2024 Top 10 New Species on Monday, 23 December, so you’d better go to the right of this screen and subscribe to our blog!

As we realised we might’ve been a bit biased towards our publishing activities over the years, this time, hereby, we chose to present you a retrospection that captures our best 2024 moments from across the departments, and shed light on how the publishing, technology and project communication endeavours fit together to make Pensoft what it is.

In truth, we take pride in being an exponentially growing family of multiple departments that currently comprises over 60 full-time employees and about a dozen freelancers working from all corners of the world, including Australia, Canada, Belgium and the United Kingdom. Together, we are all determined to make sure we continuously improve our service to all who have trusted us: authors, reviewers, editors, client journals, learned societies, research institutions, project consortia and other external collaborators.


After all, great deeds are only possible when you team up with great like-minded people!

Pensoft as an open-access academic publisher 

Pensoft’s stand at the 2024 TDWG-SPNHC joint conference (September, Japan).

In 2024, at Pensoft, we were hugely pleased to see a significant growth in the published output at almost all our journals, including record-breaking numbers in both submissions and publications at flagship titles of ours, including the Biodiversity Data Journal, PhytoKeys and MycoKeys

Other fantastic news came in June from our Indexing team, who confirmed that One Ecosystem: a quite unique and novel academic outlet we launched in collaboration with the Ecosystem Services Partnership in 2016 – received its first Impact Factor

Later in 2024, our colleagues, who work together with our clients to ensure their journals comply with the requirements of the top scholarly databases before they apply for indexation, informed us that another two journals in our portfolio have had their applications to Clarivate’s Web of Science successfully accepted. These are the newest journal of the International Association of Vegetation Science: Vegetation and Classification, and Metabarcoding and Metagenomics: a journal we launched in 2017 in collaboration with a team of brilliant scientists working together at the time within the DNAquaNet COST Action.

In 2024, we also joined the celebrations of our long-time partners at the Museum für Naturkunde Berlin, whose three journals: Zoosystematics and Evolution, Deutsche Entomologische Zeitschrift and Fossil Record are all part of our journal portfolio. This year marked the 10th Open Access anniversary of the three journals.

In the meantime, we also registered a record in new titles either joining the Pensoft portfolio or opting for ARPHA Platform’s white-label publishing solution, where journal owners retain exclusivity for the publication of their titles, yet use ARPHA’s end-to-end technology and as many human-provided services as necessary.

Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev with Prof. Dr. Marc Stadler, Editor-in-Chief of IMA Fungus and President of the International Mycological Association at the Pensoft booth at the 12th International Mycological Congress (August, the Netherlands). 

Amongst our new partners are the International Mycological Association who moved their official journal IMA Fungus to ARPHA Platform. As part of Pensoft’s scholarly portfolio, the renowned journal joins another well-known academic title in the field of mycology: MycoKeys, which was launched by Pensoft in 2011. The big announcement was aptly made public at this year’s 12th International Mycological Congress where visitors of the Pensoft stand could often spot newly elected IMA President and IMA Fungus Chief editor: Marc Stadler chatting with our founder and CEO Lyubomir Penev by the Pensoft/MycoKeys booth.

Other partners who chose the services of ARPHA Platform for their journals in 2024 include the International Biogeography Society, United Arab Emirates University and Medical University Pleven.

On our end, we did not stop supporting enthusiastic and proactive scientists in their attempt to bridge gaps in scientific knowledge. In January, we launched the Estuarine Management and Technologies journal together with Dr. Soufiane Haddout of the Ibn Tofail University, Morocco. 

Later on, Dr. Franco Andreone (Museo Regionale di Scienze Naturali, Italy) sought us with the idea to launch a journal addressing the role of natural history museums and herbaria collections in scientific progress. This collaboration resulted in the Natural History Collections and Museomics journal, officially announced at the joint TDWG-SPNHC conference in Okinawa, Japan in August.

Around this time, we finalised our similarly exciting journal project in partnership with Prof. Dr. Volker Grimm (UFZ, Germany), Prof. Dr. Karin Frank (UFZ, Germany), Prof. Dr. Mark E. Hauber (City University of New York) and Prof. Dr. Florian Jeltsch (University of Potsdam, Germany). The outcome of this collaboration is called Individual-based Ecology: a journal that aims to promote an individual-based perspective in ecology, as it closes the knowledge gap between individual-level responses and broader ecological patterns.

The three newly-launched journals are all published under the Diamond Open Access model, where neither access, nor publication is subject to charges.

As you can see, we have a lot to be proud of in terms of our journals. This is also why in 2024 our team took a record number of trips to attend major scientific events, where we got the chance to meet face-to-face with long-time editors, authors, reviewers and readers of our journals. Even more exciting was meeting the new faces of scientific research and learning about their own take on scholarship and academic journals.

Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev welcomed editors at PhytoKeys to the Pensoft-PhytoKeys-branded booth at the XX International Botanical Congress in July 2024 (Spain).

In 2024, we presented our journals and publishing opportunities at about 20 scientific forums, including the XX International Botanical Congress (July, Spain), the 12th International Mycological Congress (August, the Netherlands), the 10th World Congress of Herpetology (August, Malaysia) and the XXVII International Congress of Entomology (August, Japan).

Pensoft as a scientific technology provider

We cannot possibly comment on Pensoft’s tech progress in 2024 without mentioning the EU-funded project BiCIKL (acronym for Biodiversity Community Integrated Knowledge Library) that we coordinated for three years ending up last April. 

This 36-month endeavour saw 14 member institutions and 15 research infrastructures representing diverse actors from the biodiversity data realm come together to improve bi-directional links between different platforms, standards, formats and scientific fields. 

Following these three years of collaborative work, we reported a great many notable research outputs from our consortium (find about them in the open-science project collection in the Research Ideas and Outcomes journal, titled “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective) that culminated in the Biodiversity Knowledge Hub: a one-stop portal that allows users to access FAIR and interlinked biodiversity data and services in a few clicks; and also a set of policy recommendations addressing key policy makers, research institutions and funders who deal with various types of data about the world’s biodiversity, and are thereby responsible to ensuring there findability, accessibility, interoperability and reusability (FAIR-ness).

The Biodiversity Knowledge Hub
Visit the Biodiversity Knowledge Hub: the main product of the BiCIKL consortium at: https://biodiversityknowledgehub.eu/.

Apart from coordinating BiCIKL, we also worked side-by-side with our partners to develop, refine and test each other’s tools and services, in order to make sure that they communicate efficiently with each other, thereby aligning with the principles of FAIR data and the needs of the scientific community in the long run.

During those three years we made a lot of refinements to our OpenBiodiv: a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System, and our ARPHA Writing Tool. The latter is an XML-based online authoring environment using a large set of pre-formatted templates, where manuscripts are collaboratively written, edited and submitted to participating journals published on ARPHA Platform. What makes the tool particularly special is its multiple features that streamline and FAIRify data publishing as part of a scientific publication, especially in the field of biodiversity knowledge. In fact, we made enough improvements to the ARPHA Writing Tool that we will be soon officially releasing its 2.0 version!

OpenBiodiv – The Open Biodiversity Knowledge Management System
ARPHA Writing Tool 2.0

Amongst our collaborative projects are the Nanopublications for Biodiversity workflow that we co-developed with KnowledgePixels to allow researchers to ‘fragment’ their most important scientific findings into machine-actionable and machine-interpretable statements. Being the smallest units of publishable information, these ‘pixels of knowledge’ present an assertion about anything that can be uniquely identified and attributed to its author and serve to communicate a single statement, its original source (provenance) and citation record (publication info).

Nanopublications for Biodiversity

In partnership with the Swiss-based Text Mining group of Patrick Ruch at SIB and the text- and data-mining association Plazi, we brought the SIB Literature Services (SIBiLS) database one step closer to solidifying its “Biodiversity PMC” portal and working title.

Understandably, we spent a lot of effort, time and enthusiasm in raising awareness about our most recent innovations, in addition to our long-standing workflows, formats and tools developed with the aim to facilitate open and efficient access to scientific data; and their integration into published scholarly work, as well as receiving well-deserved recognition for their collection.

We just can’t stress it enough how important and beneficial it is for everyone to have high-quality FAIR data, ideally made available within a formal scientific publication!    

Pensoft’s CTO Teodor Georgiev talks about innovative methods and good practices in the publication of biodiversity data in scholarly papers at the First national meeting of the Bulgarian Barcode of Life (BgBOL) consortium (December, Bulgaria).
Pensoft’s CEO and founder Prof. Dr. Lyubomir Penev presenting his “Data papers on biodiversity” talk at the “Biodiversity data in montane and arid Eurasia” symposium jointly organized by GBIF and by the Institute of Zoology of Republic of Kazakhstan (November, Kazakhstan).

.

Pensoft’s CTO Teodor Georgiev presents new features and workflows currently in testing at the ARPHA Writing Tool 2.0 at the EASE Autumn Symposium 2024 (online event).

Pensoft’s Head of Journal development, Marketing and PR Iva Boyadzhieva talks about Pensoft’s data publishing approach and innovations at the German Ecological Society 53rd Annual Conference (September, Germany).

Pensoft as a science communicator

At our Project team, which is undoubtedly the fastest developing department at Pensoft, science communicators are working closely with technology and publishing teams to help consortia bring their scientific results closer to policy actors, decision-makers and the society at large.

Ultimately, bridging the notorious chasm between researchers and global politics boils down to mutual understanding and dialogue. 

Pensoft’s communication team attended COP16 (November 2024, Colombia) along with partners at the consortia of CO-OP4CBD, BioAgora and RESPIN: three Horizon Europe projects, whose communication and dissemination is led by Pensoft.

Throughout 2024, the team, comprising 20 science communicators and project managers, has been working as part of 27 EU-funded project consortia, including nine that have only started this year (check out all partnering projects on the Pensoft website, ordered from most recently started to oldest). Apart from communicating key outcomes and activities during the duration of the projects, at many of the projects, our team has also been actively involved in their grant proposal drafting, coordination, administration, platform development, graphic and web design and others (see all project services offered by Pensoft to consortia).

Naturally, we had a seat on the front row during many milestones achieved by our partners at all those 27 ongoing projects, and communicated to the public by our communicators. 

Amongst those are the release of the InsectsCount web application developed within the Horizon 2020 project SHOWCASE. Through innovative gamification elements, the app encourages users to share valuable data about flower-visiting insects, which in turn help researchers gain new knowledge about the relationship between observed species and the region’s land use and management practices (learn more about InsectsCount on the SHOWCASE prroject website). 

Another fantastic project output was the long-awaited dataset of maps of annual forest disturbances across 38 European countries derived from the Landsat satellite data archive published by the Horizon Europe project ForestPaths in April (find more about the European Forest Disturbance Atlas on the ForestPaths project website).

In a major company highlight, last month, our project team participated in COP29 in Baku, Azerbaijan with a side event dedicated to the role of open science and science communication in climate- and biodiversity-friendly policy.

Pensoft’s participation at COP29 – as well as our perspective on FAIR data and open science – were recently covered in an interview by Exposed by CMD (a US-based news media accredited to cover the event) with our science communicator Alexandra Korcheva and project manager Boris Barov. 

You see, A LOT of great things worth celebrating happened during the year for us at Pensoft: all thanks to ceaselessly flourishing collaboration based on transparency, trust and integrity. Huge ‘THANK YOU!’ goes to everyone who has joined us in our endeavours!

Here’s to many more shared achievements coming up in 2025!

***

Now, to keep up with our next steps in real time, we invite you to follow Pensoft on social media on BlueSky, X, Facebook, Instagram and Linkedin

Don’t forget to also enter your email to the right to sign up for new content from this blog!

Microplastic contamination of Black Sea fish threatens marine ecosystems

Five commercially important fish species from the Bulgarian Black Sea coast were found to be contaminated with microplastics.

Guest blog post by Stephany Toschkova, Sevginar Ibryamova, Darina Ch. Bachvarova, Teodora Koynova, Elitca Stanachkova, Radoslav Ivanov, Nikolay Natchev, Tsveteslava Ignatova-Ivanova

One of the main problems of the world’s oceans, reported by many scientific studies, is microplastic pollution. It is also one of the main sources of pollution in the Black Sea. Our new study in BioRisk details microplastic contamination in five fish species important for commercial fishing (Garfish, Мullet, Knout goby, Pontic shad, and Mediterranean horse mackerel). The fish were collected from the Sozopol area of the Bulgarian Black Sea coast.

  • A photo of a Mediterranean horse mackerel.
  • A photo of a Knout Goby.
  • A photo of a mullet fish.

Our results show a wide variety of micropollutants originating from commonly used items such as plastic cups, stirrers, bags, soft drink bottles, fishing nets, packaging, аnd personal hygiene products. These objects systematically enter the Black Sea and degrade into microplastic particles. Microplastics (MPs) were found in all studied tissues of the fish in the form of pellets, fibers and fragments. Pellets were found most frequently, followed by irregularly shaped fragments, while fibers were the least numerous.

Stereomicroscope picture of morphological types of microplastics (arrowheads) recognized in the studied specied from: A) Garfish; B) Mullet C) Pontic shad and D) Mediterranean horse mackerel.

The bulk of the isolated plastics are made of polyethylene (PE) and polyethylene terephthalate (PET). PE is found in plastic bottles, cups, stirrers, and plastic bags. This polymer is very light and floats on the surface of the sea because its density is lower than that of water. PET, on the other hand, is denser than water and more likely to sink and accumulate in it and in organisms living on the seafloor. These polymers are widely used in fabrics, nets, ropes, and strings used for fishing, one of the main economic activities in the Black Sea. The predominant polymer type, PE, corresponds to the content of manufactured plastics all around Europe, as almost half of the plastics produced in Europe are reported as PE.

The sinking and sedimentation of plastics relate to the fact that the upper layer of the Black Sea is less dense than that of other seas. Furthermore, the weight of these particles increases due to the accumulation of marine plants and nutrients on them, and this can affect the distribution of plastics and their sedimentation on the seabed.

A satellite image of the Black Sea. Photo by NASA/GSFC/MODIS

Judging by the obtained results and the amount and type of polymers found in the study and the literature, the source of contamination, in our opinion, can be mainly attributed to domestic wastewater discharges coming from the washing of synthetic fabrics. In Bulgaria, wastewater is discharged – directly or after purification – into marine and freshwater ecosystems, as is the case in other neighbouring countries along the Black Sea coast. However, detailed studies are needed to prove this hypothesis. 

Considering the wide variety of MP types detected in the digestive tracts of the fish, we assume that they regularly ingested MPs during feeding. Many nutrients are also held on the plastic particles, which deceives the fish into perceiving them as food.

It has been reported that plastics smaller than 1000 μm can reach the digestive tract or the gills of fish, and in turn can cause adverse effects such as a weak immune response or reduced fertility.

MPs can also accumulate in predatory fish species. Unfortunately, very limited research was performed on bioaccumulation and biomagnification in food webs, therefore more studies are needed to reach this conclusion.

MPs enter seawater food chains in different pathways and threaten entire ecosystems through their ability to transport pollutants, pathogenic microorganisms, and alien species. Bearing in mind the intensifying economic activity on the Black Sea coast and the consequent influence on the riverine water quality, river mouths can be considered potential sources of MPs. Particularly concerning is the area near the Kamchia River mouth, which is the biggest intra-territorial river in Bulgaria, entering directly into the Black Sea, with a catchment area of more than 5 300 km2 . This catchment and the entire Black Sea coast, where agriculture is well developed is a potential source of MPs, which have the ability to absorb and release toxic chemicals of organic and inorganic origin such as bisphenol A, PCBs and DDT, creating an additional potential risk to human health.

A satellite image showing the Kamchia River mouth.
A satellite image showing the Kamchia River mouth.

Humans are exposed to BPA in the environment they live in, from the air we breathe to the food and drinks we consume. So, even if BPA intake is below accepted limits, this does not guarantee that the additive will not accumulate and cause more pronounced effects and chronic toxicity in the food chain, given its tendency to accumulate.

It is important that future research determines the toxicological side effects of plastic ingestion for fish communities in both benthic and pelagic habitats. However, even if we stop introducing plastics into the water system, both groups of fish will continue to be impacted, since the number of microplastics can increase due to the breakdown of larger plastics in the environment. 

This study shows the need to carry out further studies of microplastics using different types of microscopic and spectral analysis. Even though microplastics may not pose a risk to humans who consume fish, these contaminants pose a potential risk to marine food webs and endangered species. We found particles of different sizes, types and colours in different fish species, and believe the variability of polymer types in fish can indicate the polymer types in water to some extent. Our results show that fish are important as ecological bioindicators and serve as a basis for future studies on microplastic pollution in tourist sandy beaches.

Research article:

Toschkova S, Ibryamova S, Bachvarova DCh, Koynova T, Stanachkova E, Ivanov R, Natchev N, Ignatova-Ivanova T (2024) The assessment of the bioaccumulation of microplastics in key fish species from the Bulgarian aquatory of the Black Sea. BioRisk 22: 17-31. https://doi.org/10.3897/biorisk.22.117668

Pensoft collaborates with R Discovery to elevate research discoverability

Pensoft and R Discovery’s innovative connection aims to change the way researchers find academic articles.

Leading scholarly publisher Pensoft has announced a strategic collaboration with R Discovery, the AI-powered research discovery platform by Cactus Communications, a renowned science communications and technology company. This partnership aims to revolutionize the accessibility and discoverability of research articles published by Pensoft, making them more readily available on R Discovery to its over three million researchers across the globe.

R Discovery, acclaimed for its advanced algorithms and an extensive database boasting over 120 million scholarly articles, empowers researchers with intelligent search capabilities and personalized recommendations. Through its innovative Reading Feed feature, R Discovery delivers tailored suggestions in a format reminiscent of social media, identifying articles based on individual research interests. This not only saves time but also keeps researchers updated with the latest and most relevant studies in their field.

Open Science is much more than cost-free access to research output.

Lyubomir Penev

One of R Discovery’s standout features is its ability to provide paper summaries, audio readings, and language translation, enabling users to quickly assess a paper’s relevance and enhance their research reading experience significantly.

With over 2.5 million app downloads and upwards of 80 million journal articles featured, the R Discovery database is one of the largest scholarly content repositories.

At Pensoft, we do realise that Open Science is much more than cost-free access to research outputs. It is also about easier discoverability and reusability, or, in other words, how likely it is for the reader to come across a particular scientific publication and, as a result, cite and build on those findings in his/her own studies. By feeding the content of our journals into R Discovery, we’re further facilitating the discoverability of the research done and shared by the authors who trust us with their work,” said ARPHA’s and Pensoft’s founder and CEO Prof. Lyubomir Penev.

Abhishek Goel, Co-Founder and CEO of Cactus Communications, commented on the collaboration, “We are delighted to work with Pensoft and offer researchers easy access to the publisher’s high-quality research articles on R Discovery. This is a milestone in our quest to support academia in advancing open science that can help researchers improve the world.

So far, R Discovery has successfully established partnership with over 20 publishers, enhancing the platform’s extensive repository of scholarly content. By joining forces with R Discovery, Pensoft solidifies its dedication to making scholarly publications from its open-access, peer-reviewed journal portfolio easily discoverable and accessible.

Novel bacteria identification methods might help speed up disease diagnosis

The technique, applied on turtle skin in this study, allows for the rapid detection of Pseudomonas bacteria, which can cause various human diseases.

Why is it important to study bacteria?

Pseudomonas aeruginosa is a bacterial strain that can be responsible for several human diseases: the most serious include malignant external otitis, endophthalmitis, endocarditis, meningitis, pneumonia, and septicemia.

The environments in which these bacteria are most frequently found include soil, plants, and water. They can even be found on human and animal skin, without causing illness, in a process known as bacterial colonisation. Microbiological research can help establish the cause of certain infectious diseases, making it easier to choose the best treatment. This is why it is important to find a quick and easy way to identify these bacteria. A new study, published in the open-access journal BioRisk, explored this by applying spectroscopic techniques for quick analysis directly from an object, which, in this case, was turtle skin.

Sampling of biological material from turtle skin before further microbiological analysis and Raman spectroscopy. Credit Inta Umbraško

“Microbial organisms play key roles in animal health and ecology. The European pond turtle often lives in city Zoo gardens and private houses. Often, the most commonly found bacteria from turtle skin surfaces was Pseudomonas species,” says Aleksandrs Petjukevics of Daugavpils University, whose team conducted the study.

What is Raman spectroscopy?

“Classical microbiological research techniques have several disadvantages: first of all, it is a rather lengthy process. The minimum period is 3-4 days, but many days and even weeks may pass before the isolated pathogen is accurately identified, and it uses expensive chemicals and resources,” says Aleksandrs Petjukevics. As an alternative, spectrometry makes it possible to identify a prepared sample of a microorganism while reducing the identification time to 5-30 minutes.

Renishaw inVia Raman Microscope. Credit Inta Umbraško 

Raman spectra represent an ensemble of signals that arise from the molecular vibrations of individual cell components of gram-negative bacteria, integrating over proteins, lipids, and carbohydrates. “This non-destructive chemical analysis technique provides detailed information about chemical structure, phase and polymorphy, crystallinity, and molecular interactions. It is based on the interaction of light with the chemical bonds within a material,” he says.

Research results and implications

The study’s findings showed that Pseudomonas bacteria can be quickly identified using this detection technology, with excellent analytical and diagnostic sensitivity, making it a dependable technique.

Unlike other methods, this technique does not require long-term bacterial sample preparation and expensive reagents, which makes it promising for studying other strains of bacteria.

“This study demonstrated the ability to obtain fast and high-quality Raman spectra of bacterial cells using vibrational spectroscopy,” says Aleksandrs Petjukevics. “Raman spectroscopy can be considered an express method for identifying microorganisms. It holds great potential for future research involving different microorganisms.”

Research article: 

Petjukevičs A, Umbraško I, Škute N (2023) Prospects and possibilities of using Raman spectroscopy for the identification of Pseudomonas aeruginosa from turtle Emys orbicularis (Linnaeus, 1758) skin. BioRisk 21: 19-28. https://doi.org/10.3897/biorisk.21.111983

Eye for Detail: Papers in Pensoft journals sport a new look

As behaviours and needs of readers change, we strive to keep up with the times. Let’s run through what & why has changed to the PDF format.

Readers at some of the journals published by Pensoft, who have downloaded/printed a publication or ordered a physical copy of a journal issue over the last few weeks, might be in for a surprise concerning the layout of the PDF format of the articles. 

Research papers published in ZooKeys demonstrating the former (left) and the current (right) article layout seen in the PDF format. 

Even though it’s been years since online publishing has become the norm in how we are consuming information – including scientific publications – we understand that academia is still very much fond of traditional, often paper-based, article layout format: the one you use when accessing a PDF file or a print copy, rather than directly scrolling down through the HTML version of the article. 

Even if today large orders of printed volumes from overseas are the exception, rather than the rule, we know we have readers of ours who regularly print manuscripts at home or savе them on their devices. Trends like this have already led to many journals first abandoning the physical- for digital-first, then transitioning to digital-only publication format.

Meanwhile, it is true that needs and demands have fundamentally changed in recent times. 

As we speak, readers are accessing PDF files from much higher-quality desktops, in order to skim through as much content as possible. 

In the meantime, authors are relying on greater-quality cameras to document their discoveries, while using advanced computational tools capable of generating and analysing extra layers of precise data. While producing more exhaustive research, however, it is also of key importance that their manuscripts are processed and published as rapidly as possible.

So, let’s run through the updates and give you our reasoning for their added value to readers and authors.

Revised opening page

One of the major changes is the one to the format of the first page. By leaving some blank space on the left, we found a dedicated place for important article metadata, i.e. academic editor, date of manuscript submission / acceptance / publication, citation details and licence. As a result, we “cleaned up” the upper part of the page, so that it can better highlight the authors and their affiliations. 

Bottom line: The new layout provides a better structure to the opening page to let readers find key article metadata at a glance. 

Expand as much – or as little – as comfortable

As you might know, journals published by Pensoft have been coming in different formats and sizes. Now, we have introduced the standard A4 page size, where the text is laid in a single column that has been slightly indented to the right, as seen above. Whenever a figure or a table is used in a manuscript, however, it is expanded onto the whole width of the page.

Before giving our reasons why, let’s see what were the specific problems that we address.

Case study 1

Some of our signature journals, including ZooKeys, PhytoKeys and MycoKeys, have become quite recognisable with their smaller-than-average B5 format, widely appreciated by people who would often be seen carrying around a copy during a conference or an international flight.

However, in recent times, authors began to embrace good practices in research like open sharing of data and code, which resulted in larger and more complex tables. Similarly, their pocket-sized cameras would capture much higher-resolution photos capable of revealing otherwise minute morphological characters. Smaller page size would also mean that often there would be pages between an in-text reference of a figure or a table and the visual itself.

So, here we faced an obvious question: shall we deprive their readers from all those detailed insights into the published studies?

Case study 2

Meanwhile, other journals, such as Herpetozoa, Zoosystematics and Evolution and Deutsche Entomologische Zeitschrift, had long been operating in A4 size, thereby providing their readers with a full view of the figures in their publications. 

Yet, the A4 format brought up another issue: the lines were too long for the eye comfort of their readers. 

What they did was organise their pages into two-column format. While this sounds like a good and quite obvious decision, the format – best known from print newspapers – is pretty inconvenient when accessed digitally. Since the readers would like to zoom in on the PDF page or simply access the article on mobile, they will need to scroll up and down several times per page. 

In addition, the production of a two-column text is technologically more challenging, which results in extra production time.

Bottom line: The new layout allows journals to not sacrifice image quality for text readability and vice versa. As a bonus, authors enjoy faster publication for their papers.

Simplified font

If you have a closer look at the PDF file, you would notice that print-ready papers have also switched to a more simplistic – yet easier to the eye – font. Again, the update corresponds to today’s digital-native user behaviour, where readers often access PDF files from devices of various resolutions and skim through the text, as opposed to studying its content in detail.

In fact, the change is hardly new, since the same font has long been utilised for the webpages (HTML format) of the publications across all journals.

Bottom line: The slightly rounder and simplified font prompts readability, thereby allowing for faster and increased consumption of content. 

What’s the catch? How about characters and APCs?

While we have been receiving a lot of positive feedback from editors, authors and readers, there has been a concern that the updates would increase the publication charges, wherever these are estimated based on page numbers.

Having calculated the lines and characters in the new layout format, we would like to assure you that there is no increase in the numbers of characters or words between the former and current layout formats. In fact, due to the additional number of lines fitting in an A4 page as opposed to B5, authors might be even up for a deal.

________

* At the time of the writing, the new paper layout has not been rolled out at all journals published by Pensoft. However, most of the editorial boards have already confirmed they would like to incorporate the update.

________

For news from & about Pensoft and our journal portfolio, follow us on Twitter, Facebook and Linkedin.

Interoperable biodiversity data extracted from literature through open-ended queries

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

The OpenBiodiv contribution to BiCIKL

Apart from coordinating the Horizon 2020-funded project BiCIKL, scholarly publisher and technology provider Pensoft has been the engine behind what is likely to be the first production-stage semantic system to run on top of a reasonably-sized biodiversity knowledge graph.

OpenBiodiv is a biodiversity database containing knowledge extracted from scientific literature, built as an Open Biodiversity Knowledge Management System. 

As of February 2023, OpenBiodiv contains 36,308 processed articles; 69,596 taxon treatments; 1,131 institutions; 460,475 taxon names; 87,876 sequences; 247,023 bibliographic references; 341,594 author names; and 2,770,357 article sections and subsections.

In fact, OpenBiodiv is a whole ecosystem comprising tools and services that enable biodiversity data to be extracted from the text of biodiversity articles published in data-minable XML format, as in the journals published by Pensoft (e.g. ZooKeys, PhytoKeys, MycoKeys, Biodiversity Data Journal), and other taxonomic treatments – available from Plazi and Plazi’s specialised extraction workflow – into Linked Open Data.

“I believe that OpenBiodiv is a good real-life example of how the outputs and efforts of a research project may and should outlive the duration of the project itself. Something that is – of course – central to our mission at BiCIKL.”

explains Prof Lyubomir Penev, BiCIKL’s Project Coordinator and founder and CEO of Pensoft.

“The basics of what was to become the OpenBiodiv database began to come together back in 2015 within the EU-funded BIG4 PhD project of Victor Senderov, later succeeded by another PhD project by Mariya Dimitrova within IGNITE. It was during those two projects that the backend Ontology-O, the first versions of RDF converters and the basic website functionalities were created,”

he adds.

At the time OpenBiodiv became one of the nine research infrastructures within BiCIKL tasked with the provision of virtual access to open FAIR data, tools and services, it had already evolved into a RDF-based biodiversity knowledge graph, equipped with a fully automated extraction and indexing workflow and user apps.

Currently, Pensoft is working at full speed on new user apps in OpenBiodiv, as the team is continuously bringing into play invaluable feedback and recommendation from end-users and partners at BiCIKL. 

As a result, OpenBiodiv is already capable of answering open-ended queries based on the available data. To do this, OpenBiodiv discovers ‘hidden’ links between data classes, i.e. taxon names, taxon treatments, specimens, sequences, persons/authors and collections/institutions. 

Thus, the system generates new knowledge about taxa, scientific articles and their subsections, the examined materials and their metadata, localities and sequences, amongst others. Additionally, it is able to return information with a relevant visual representation about any one or a combination of those major data classes within a certain scope and semantic context.

Users can explore the database by either typing in any term (even if misspelt!) in the search engine available from the OpenBiodiv homepage; or integrating an Application Programming Interface (API); as well as by using SPARQL queries.

On the OpenBiodiv website, there is also a list of predefined SPARQL queries, which is continuously being expanded.

Sample of predefined SPARQL queries at OpenBiodiv.

“OpenBiodiv is an ambitious project of ours, and it’s surely one close to Pensoft’s heart, given our decades-long dedication to biodiversity science and knowledge sharing. Our previous fruitful partnerships with Plazi, BIG4 and IGNITE, as well as the current exciting and inspirational network of BiCIKL are wonderful examples of how far we can go with the right collaborators,”

concludes Prof Lyubomir Penev.

***

Follow BiCIKL on Twitter and Facebook. Join the conversation on Twitter at #BiCIKL_H2020.

You can also follow Pensoft on Twitter, Facebook and Linkedin and use #OpenBiodiv on Twitter.

Pensoft among the first 27 publishers to share prices & services via the Journal Comparison Service by Plan S

All journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

In support of transparency and openness in scholarly publishing and academia, the scientific publisher and technology provider Pensoft joined the Journal Comparison Service (JCS) initiative by cOAlition S, an alliance of national funders and charitable bodies working to increase the volume of free-to-read research. 

As a result, all journals published by Pensoft – each using the publisher’s self-developed ARPHA Platform – provide extensive and transparent information about their costs and services in line with the Plan S principles.

The JCS was launched to aid libraries and library consortia – the ones negotiating and participating in Open Access agreements with publishers – by providing them with everything they need to know in order to determine whether the prices charged by a certain journal are fair and corresponding to the quality of the service. 

According to cOAlition S, an increasing number of libraries and library consortia from Europe, Africa, North America, and Australia have registered with the JCS over the past year since the launch of the portal in September 2021.

While access to the JCS is only open to librarians, individual researchers may also make use of the data provided by the participating publishers and their journals. 

This is possible through an integration with the Journal Checker Tool, where researchers can simply enter the name of the journal of interest, their funder and affiliation (if applicable) to check whether the scholarly outlet complies with the Open Access policy of the author’s funder. A full list of all academic titles that provide data to the JCS is also publicly available. By being on the list means a journal and its publisher do not only support cOAlition S, but they also demonstrate that they stand for openness and transparency in scholarly publishing.

“We are delighted that Pensoft, along with a number of other publishers, have shared their price and service data through the Journal Comparison Service. Not only are such publishers demonstrating their commitment to open business models and cultures but are also helping to build understanding and trust within the research community.”

said Robert Kiley, Head of Strategy at cOAlition S. 

***

About cOAlition S:

On 4 September 2018, a group of national research funding organisations, with the support of the European Commission and the European Research Council (ERC), announced the launch of cOAlition S, an initiative to make full and immediate Open Access to research publications a reality. It is built around Plan S, which consists of one target and 10 principles. Read more on the cOAlition S website.

About Plan S:

Plan S is an initiative for Open Access publishing that was launched in September 2018. The plan is supported by cOAlition S, an international consortium of research funding and performing organisations. Plan S requires that, from 2021, scientific publications that result from research funded by public grants must be published in compliant Open Access journals or platforms. Read more on the cOAlition S website.

Pensoft’s ARPHA Publishing Platform integrates with OA Switchboard to streamline reporting to funders of open research

By the time authors open their inboxes to the message their work is online, a similar notification will have also reached their research funder.

Image credit: OA Switchboard.

By the time authors – who have acknowledged third-party financial support in their research papers submitted to a journal using the Pensoft-developed publishing platform: ARPHA – open their inboxes to the congratulatory message that their work has just been published and made available to the wide world, a similar notification will have also reached their research funder.

This automated workflow is already in effect at all journals (co-)published by Pensoft and those published under their own imprint on the ARPHA Platform, as a result of the new partnership with the OA Switchboard: a community-driven initiative with the mission to serve as a central information exchange hub between stakeholders about open access publications, while making things simpler for everyone involved.

All the submitting author needs to do to ensure that their research funder receives a notification about the publication is to select the supporting agency or the scientific project (e.g. a project supported by Horizon Europe) in the manuscript submission form, using a handy drop-down menu. In either case, the message will be sent to the funding body as soon as the paper is published in the respective journal.

“At Pensoft, we are delighted to announce our integration with the OA Switchboard, as this workflow is yet another excellent practice in scholarly publishing that supports transparency in research. Needless to say, funding and financing are cornerstones in scientific work and scholarship, so it is equally important to ensure funding bodies are provided with full, prompt and convenient reports about their own input.”

comments Prof Lyubomir Penev, CEO and founder of Pensoft and ARPHA.

 

“Research funders are one of the three key stakeholder groups in OA Switchboard and are represented in our founding partners. They seek support in demonstrating the extent and impact of their research funding and delivering on their commitment to OA. It is great to see Pensoft has started their integration with OA Switchboard with a focus on this specific group, fulfilling an important need,”

adds Yvonne Campfens, Executive Director of the OA Switchboard.

***

About the OA Switchboard:

A global not-for-profit and independent intermediary established in 2020, the OA Switchboard provides a central hub for research funders, institutions and publishers to exchange OA-related publication-level information. Connecting parties and systems, and streamlining communication and the neutral exchange of metadata, the OA Switchboard provides direct, indirect and community benefits: simplicity and transparency, collaboration and interoperability, and efficiency and cost-effectiveness.

About Pensoft:

Pensoft is an independent academic publishing company, well known worldwide for its novel cutting-edge publishing tools, workflows and methods for text and data publishing of journals, books and conference materials.

All journals (co-)published by Pensoft are hosted on Pensoft’s full-featured ARPHA Publishing Platform and published in a way that ensures their content is as FAIR as possible, meaning that it is effortlessly readable, discoverable, harvestable, citable and reusable by both humans and machines.

***

Follow Pensoft on Twitter, Facebook and Linkedin.
Follow OA Switchboard on Twitter and Linkedin.

First discovery of microplastics from water trapped on plant leaves

“These phytotelmata are very small and have a short lifespan. The question is, therefore, how were they polluted with microplastics?”

Although they have not been around for long, microplastics have found their way to almost every ecosystem on the planet. They have been discovered in the soil, in rivers, in our food and bottled water, and even in the human body. Recently, a team of researchers found, for the first time, microplastics in water trapped in plant leaf axils.

The teasel Dipsacus.

Katarína Fogašová, Peter Manko, and Jozef Obona of the University of Prešov, Slovakia, initially set out to Eastern Slovakia to study the organisms living in the little water puddles forming in teasel leaf axils. 

Teasels of the genus Dipsacus have characteristic opposite leaves that grow on the stem above each other in several levels. As they clasp the stem, they form cup-like structures that collect water, known as telmata. 

“Teasel phytotelmata are a relatively common but overlooked aquatic microcosm with a very short-term occurrence of only 3 to 4 months.“

To their surprise, they found differently coloured fragments and fibers, some reaching 2.4 mm in length, which were identified as microplastics.

“These phytotelmata are very small and have a short lifespan,” the researchers write in their paper, which was published in the journal BioRisk. “The question is, therefore, how were they polluted with microplastics?”

Phytotelmata provided by teasel.

No other sources of contaminants were found in the studied area, so the fragments and fibers most likely came from polluted atmosphere, they suggest. Another theory is that snails may have transported them from the soil or from other plants, in or on their bodies. 

“The first finding of microplastics in small short-term water reservoirs created by plants is further evidence that contamination of this kind spreads through various pathways and probably no environment on Earth is safe, which of course makes our discovery quite disheartening,” the researchers say.

“On the other hand, the results of our research of teasel phytotelmata, as a very unusual and highly specific natural environment, offer many possibilities for use in researching the spatio-temporal characteristics of the spread of microplastic pollution and its potential impact on the plants themselves, as well as organisms bound to them by ecological relations.”

They suggest that, due to their abundance and theoretical ability to capture microplastics in several ways from the environment, teasel phytotelmata could be a good indicator of microplastic presence.

“Our publication therefore not only brings the first discovery of microplastic pollution of habitats of this type, but also the first proposal of a new approach to the use of teasel phytotelmata and similar micro-ecosystems provided by plants (or artificially created), as bioindicators of the presence of microplastics in the environment, possible sources and pathways of their spread through the environment and spatio-temporal changes in microplastic contamination.”

Research article:

Fogašová K, Manko P, Oboňa J (2022) The first evidence of microplastics in plant-formed fresh-water micro-ecosystems: Dipsacus teasel phytotelmata in Slovakia contaminated with MPs. BioRisk 18: 133-143. https://doi.org/10.3897/biorisk.18.87433

Images by Katarína Fogašová.

Follow BioRisk on Facebook and Twitter.

Novel research seeks to solve environmental challenges in BioRisk’s latest issue

The special issue features 35 studies presented at the International Seminar of Ecology 2021

Guest blog post by Prof. Stephka Chankova, PhD

The new special issue of BioRisk compiles materials presented at the International Seminar of Ecology – 2021. The multidisciplinary nature of modern ecology was demonstrated by the main topics of the Seminar: biodiversity and conservation biology, biotic and abiotic impact on the living nature, ecological risk and bioremediation, ecosystem research and services, landscape ecology, and ecological agriculture.

Research teams from various universities, institutes, organizations, and departments, both from Bulgaria and abroad, took part in the Seminar. Foreign participants included: Environmental Toxicology Research Unit (Egypt), Pesticide Chemistry Department, National Research Centre (Giza, Egypt); National Institute for Agrarian and Veterinary Research (Oeiras, Portugal), Centre for Ecology, Evolution and Environmental Changes (Lisbon, Portugal); Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences (Moscow, Russia).

Biorisk’s latest issue: Current trends of ecology

Some of the reports presented joint research of Bulgarian scientists and scientists from Germany, the Czech Republic, Lithuania, Romania, Slovenia, Spain, and the USA. After assessment by independent reviewers, the articles published in the journal cover the topics presented and discussed at the Seminar. 

A set of reports were focused on the anthropogenic and environmental impacts on the biota. Soil properties were shown as a factor that can modulate the effect of heavy metals, present in chronically contaminated soils. Different ap­proaches to overcome environmental pollution were presented and discussed: zeolites as detoxifying tools, microalgae for the treatment of contaminated water bodies, and a newly developed bio-fertilizer, based on activated sludge combined with a bacte­rial strain with detoxifying and plant growth-promoting properties. The clear need for the enlargement of existing monitoring program by including more bioindicators and markers was pointed out.

It was shown that, by using various markers for the evaluation of environmentally induced stress response at different levels (microbiological, molecular, biochemical), it is possible to gain insights of the organisms’ protection and the mechanisms involved in resistance formation. The contribution of increased DNA repair capacity and AOS to the development of environmental tolerance or adaptation was also shown.

Important results for understanding the processes of photoprotection in either cyanobacteria or algae, and higher plants were obtained by in vitro reconstitution of complexes of stress HliA protein with pigments. The crucial role of the cellular physiological state, as a critical factor in determining the resistance to environmental stress with Q cells was demonstrated.

Several papers were focused on the action of bioactive substances of plants origin. The bioactivity was shown to depend strongly on chemical composition. Origanum vulgare hirtum essential oil was promoted as a promising candidate for the purposes of “green” technologies. Analyzing secondary metabolites of plants, it was shown that their productivity in vitro is a dynamic process closely related to the plant growth and development, and is in close relation with the interactions of the plant with the environment.

Origanum vulgare hirtum. Photo by cultivar413 under a CC-BY 2.0 license

The influence of the agricultural system type on essential oil production and antioxidant activity of industrially-cultivated Rosa damascena in the Rose valley (Bulgaria) was reported, comparing organic vs conventional farming. The rose extracts from organic farming were shown to accumulate more phenolic compounds, corresponding to the higher antioxidant potential of organic roses.

A comparative study, based on official data from the statistics office of the EU and the Member countries, concerning viral infection levels in intensive and organic poultry farming, demonstrated that free-range production had a higher incidence of viral diseases with a high zoonotical potential.

Pollinators of Lavandula angustifolia, as an important factor for optimal production of lavender essential oil, were analyzed. It was concluded that, although lavender growers tend to place beehives in the fields for optimal essential oil production, it was crucial to preserve wild pollinators, as well.

Lavandula angustifolia inflorescence excluded from pollinators.

New data reported that essential oils and alkaloid-rich plant extracts had the strongest acetylcholinesterase inhibitory activity and could be proposed for further testing for insect control.

It was reported that the vegetation diversity of Bulgaria had still not been fully investigated. Grasslands, broad-leaved forests, and wetlands are the best investigated habitats, while data concerning ruderal, shrubland, fringe, and chasmophytic vegetation in Bulgaria are scarce.

Other important topics were reported and discussed in this session: the possibility of pest control using pteromalids as natural enemies of pests in various crops; the main reasons responsible for the population decrease of bumblebees – habitat destruction, loss of floral resources, emerging diseases, and increased use of pesticides (particularly neonicotinoids); the strong impact of temperature and wind on the distribution of zooplankton complexes in Mandra Reservoir, in Southeastern Bulgaria; an alternative approach for the ex-situ conservation of Stachys thracica based on in vitro shoot culture and its subsequent adaptation under ex vitro conditions.

Bombus hortorum/subterraneus collecting nectar in 1991, and B B. wurflenii/lapidarius worker robbing nectar of Gentiana asclepiadea in 2017

New information was presented concerning pre-monitoring geochemical research of river sediments in the area of Ada Tepe gold mining site (Eastern Rhodopes). The obtained results illustrate that the explored landscapes have been influenced by natural geochemical anomalies, as well as, impacted by human activity. The forests habitat diversity of Breznik Municipality was revealed, following the EUNIS Classification and initial data from the Ministry of Environment and Water and the Forestry Management Plans. It was shown that, in addition to the dominant species Quercus dalechampii, Quercus frainetto, Fagus sylvatica, Carpinus betulus, some artificial plantations with Pinus nigra and Pinus sylvestris were also present, as well as non-native species, such as Robinia pseudoacacia and Quercus rubra.

Models for Predicting Solution Properties and Solid-Liquid Equilibrium in Cesium Binary and Mixed Systems were created. The results are of great importance for the development of strategies and programs for nuclear waste geochemical storage. In conclusion, many results in different areas of ecology were presented in the Seminar, followed by interesting discussions. A lot of questions were answered, however many others remained open. A good platform for further discussion will be the next International Seminar of Ecology – 2022, entitled Actual Problems of Ecology.