Research from Wageningen University and Research, the Netherlands, reveals invasive lionfish are rapidly expanding their territory in the Mediterranean sea, causing severe ecological damage.
Published in the open-access journal NeoBiota, the study shows the lionfish species Pterois miles – known as the devil firefish – has established presence in the eastern Mediterranean, with observations now extending to colder waters previously thought to be unsuitable for the species.
Originating from the Indo-Pacific region, the lionfish species Pterois miles and Pterois volitans are regarded as the most successful and lethal invasive fishes in marine ecosystems, with the capacity to drastically affect local fish communities and biodiversity in invaded areas.
The invasion of Pterois miles in the Mediterranean Sea began around ten years ago. Genetic studies reveal the invasive fish originated from the Red Sea and likely entered through the Suez Canal.
Lionfish are generalist predators and impact ecosystems by preying extensively on local fishes, including endemics of high conservation value. As they are unaccustomed to lionfish, native prey species usually do not flee from this new predator.
“After years studying these predators, I find it amazing how they can easily adjust to so many different environments and be successful in areas so different from where they evolve.”
“It is always impressive to see how such a flamboyant and–to us–conspicuous predator can approach its prey without being noticed”
The study’s lead author, Davide Bottacini.
The fin spines of Pterois miles are highly venomous. A sting can cause extreme pain, sickness, convulsions, minor paralysis, and breathing difficulties in humans. Immediate emergency medical attention is recommended for anyone stung by the species.
By reviewing existing scientific data, researchers identified gaps in current understanding of the lionfish’s interactions with Mediterranean ecosystems.
They suggest that, while they consider the eradication of invasive lionfish impossible, tackling questions such as the community-level impact of them in the Mediterranean, and the evolutionary and learned responses in prey, will add to the body of knowledge on the best documented invasion in marine ecosystems.
Such information provides insights vital for biodiversity conservation, with practical implications for policy makers aiming to devise efficient mitigation plans.
Citizen science initiatives for tracking and reporting lionfish sightings are encouraged to provide valuable data that supports ongoing research efforts. Such community involvement is essential for enhancing understanding of the invasion dynamics and devising effective control measures.
Original source
Bottacini D, Pollux BJA, Nijland R, Jansen PA, Naguib M, Kotrschal A (2024) Lionfish (Pterois miles) in the Mediterranean Sea: a review of the available knowledge with an update on the invasion front. NeoBiota 92: 233–257. https://doi.org/10.3897/neobiota.92.110442
Leiden – also known as the ‘City of Keys’ and the ‘City of Discoveries’ – was aptly chosen to host the third Empowering Biodiversity Research (EBR III) conference. The two-day conference – this time focusing on the utilisation of biodiversity data as a vehicle for biodiversity research to reach to Policy – was held in a no less fitting locality: the Naturalis Biodiversity Center.
On 25th and 26th March 2024, the delegates got the chance to learn more about the latest discoveries, trends and innovations from scientists, as well as various stakeholders, including representatives of policy-making bodies, research institutions and infrastructures. The conference also ran a poster session and a Biodiversity Informatics market, where scientists, research teams, project consortia, and providers of biodiversity research-related services and tools could showcase their work and meet like-minded professionals.
BiCIKL stops at the Naturalis Biodiversity Center
The famous for its bicycle friendliness country also made a suitable stop for BiCIKL (an acronym for the Biodiversity Community Integrated Knowledge Library): a project funded under the European Commission’s Horizon 2020 programme that aimed at triggering a culture change in the way users access, (re)use, publish and share biodiversity data. To do this, the BiCIKL consortium set off on a 3-year journey to build on the existing biodiversity data infrastructures, workflows, standards and the linkages between them.
Many of the people who have been involved in the project over the last three years could be seen all around the beautiful venue. Above all, Naturalis is itself one of the partnering institutions at BiCIKL. Then, on Tuesday, on behalf of the BiCIKL consortium and the project’s coordinator: the scientific publisher and technology innovator: Pensoft, Iva Boyadzhieva presented the work done within the project one month ahead of its official conclusion at the end of April.
As she talked about the way the BiCIKL consortium took to traverse obstacles to wider use and adoption of FAIR and linked biodiversity data, she focused on BiCIKL’s main outcome: the Biodiversity Knowledge Hub (BKH).
Intended to act as a knowledge broker for users who wish to navigate and access sources of open and FAIR biodiversity data, guidelines, tools and services, in practicality, the BKH is a one-stop portal for understanding the complex but increasingly interconnected landscape of biodiversity research infrastructures in Europe and beyond. It collates information, guidelines, recommendations and best practices in usage of FAIR and linked biodiversity data, as well as a continuously expanded catalogue of compliant relevant services and tools.
At the core of the BKH is the FAIR Data Place (FDP), where users can familiarise themselves with each of the participating biodiversity infrastructures and network organisations, and also learn about the specific services they provide. There, anyone can explore various biodiversity data tools and services by browsing by their main data type, e.g. specimens, sequences, taxon names, literature.
Indisputably, the ‘hot’ topics at the EBR III were the novel technologies for remote and non-invasive, yet efficient biomonitoring; the utilisation of data and other input sourced by citizen scientists; as well as leveraging different types and sources of biodiversity data, in order to better inform decision-makers, but also future-proof the scientific knowledge we have collected and generated to date.
Amongst the other Horizon Europe projects presented at the EBR III conference was B-Cubed (Biodiversity Building Blocks for policy). On Monday, the project’s coordinator Dr Quentin Groom (Meise Botanic Garden) familiarised the conference participants with the project, which aims to standardise access to biodiversity data, in order to empower policymakers to proactively address the impacts of biodiversity change.
You can find more about B-Cubed and Pensoft’s role in it in this blog post.
MAMBO: another Horizon Europe project where Pensoft has been contributing with expertise in science communication, dissemination and exploitation, was also an active participant at the event. An acronym for Modern Approaches to the Monitoring of BiOdiversity, MAMBO had its own session on Tuesday morning, where Dr Vincent Kalkman (Naturalis Biodiversity Center), Dr France Gerard (UK Centre for Ecology & Hydrology) and Prof. Toke Høye (Aarhus University) each took to the stage to demonstrate how modern technology developed within the project is to improve biodiversity and habitat monitoring. Learn more about MAMBO and Pensoft’s involvement in this blog post.
On the event’s website you can access the MAMBO’s slides presentations by Kalkman, GerardandHøye, as presented at the EBR III conference.
***
The EBR III conference also saw a presentation – albeit remote – from Prof. Dr. Florian Leese (Dean at the University of Duisburg-Essen, Germany, and Editor-in-Chief at the Metabarcoding and Metagenomics journal), where he talked about the promise, but also the challenges for DNA-based methods to empower biodiversity monitoring.
Amongst the key tasks here, he pointed out, are the alignment of DNA-based methods with the Global Biodiversity Framework; central push and funding for standards and guidance; publication of data in portals that adhere to the best data practices and rules; and the mobilisation of existing resources such as the meteorological ones.
He also made a reference to the Forum Paper “Introducing guidelines for publishing DNA-derived occurrence data through biodiversity data platforms” by R. Henrik Nilsson et al., where the international team provided a brief rationale and an overview of guidelines targeting the principles and approaches of exposing DNA-derived occurrence data in the context of broader biodiversity data. In the study, published in the Metabarcoding and Metagenomics journal in 2022, they also introduced a living version of these guidelines, which continues to encourage feedback and interaction as new techniques and best practices emerge.
***
You can find the programme on the conference website and see highlights on the conference hashtag: #EBR2024.
A study from the Technical University Berlin suggests ‘sufficiency’ should be a more prominent strategy for protecting biodiversity.
Published in the open-access journal Nature Conservation, the paper analyses the intersection between biodiversity conservation and sufficiency strategies aimed at reducing consumption and resource use.
Study author Marianne Hachtmann notes that despite the established connection between excessive resource use by humans and biodiversity loss, there is limited explicit focus on how sufficiency strategies can support biodiversity preservation.
Reviewing literature from 2017 to 2021 and publications by nature conservation associations, the research identifies a notable gap in discussions linking sufficiency directly with biodiversity outcomes. Possible reasons for this may be the term’s political implications, lack of descriptiveness, and the use of other terms.
Furthermore, the lack of connection between sufficiency and biodiversity could be because they belong to different ‘scientific spheres’. Linking the two terms thus requires a reflective, interdisciplinary perspective.
The study proposes a detailed sufficiency typology to foster a systematic approach towards integrating the term in biodiversity conservation efforts.
“The sufficiency typology developed here allows for a systematic integration of sufficiency into biodiversity conservation and thus a joint consideration of social and nature conservation concerns.”
Marianne Hachtmann, Technical University Berlin
Policymakers, conservationists, and researchers are urged to prioritise sufficiency for the broader strategy for biodiversity conservation and sustainable living. The paper calls for further investigation into how sufficiency strategies can be crucial in conserving biodiversity and promoting sustainability.
Original source:
Hachtmann M (2024) Linking sufficiency and the protection of biodiversity: An issue of political implications, framing, descriptiveness and interdisciplinarity? Nature Conservation 55: 83-102. https://doi.org/10.3897/natureconservation.55.118243
A study spearheaded by researchers at the Helmholtz Centre for Environmental Research and Macquarie University has highlighted the important ecological role of traditional orchard meadows, calling for political and public support and incentives for farmers to protect these landscapes.
The paper, published in the open-access journal Nature Conservation, reviews the effects of management, habitat and landscape characteristics on the biodiversity of these areas in Central Europe.
Orchard meadows, characterised by the combination of cultivated grasslands and scattered fruit trees, exhibit high flora and fauna biodiversity. Despite their ecological value, these habitats have been in decline since the mid-19th century due their decreasing economic worth. They now face threats from land abandonment and intensification of agriculture.
The study emphasises the importance of moderate management intensity, connectivity to neighbouring habitats, and the preservation of structural diversity to maintain and enhance the conservation value of orchard meadows. The findings also advocate for a nuanced understanding of management impacts across taxonomic groups and points out the limitation of available studies on these habitats in Central Europe.
Currently loose in definition, the research team advocated for a clear definition of orchard meadows to create a common term in Europe, which would make their assessment and protection more straightforward. They suggest orchard meadows should be listed in the Habitats Directive of the Council of the European Union and farmers should get incentives for their maintenance. Finally, the research team calls for political and public support to prevent the loss and abandonment of these biodiverse landscapes.
“One way the public support the protection of these habitats is through consumer behaviour, specifically by purchasing local products from orchard meadows. However, it is crucial to subsidise these local products and prioritize them at local markets.
“As long as fruits from orchard meadows are treated as ‘by-products’ in the market, it will be challenging to convince people to buy local products. This change is necessary to close the economic gap between intensified fruit production and extensive orchard meadows.”
Cornelia Sattler, lead author.
Research paper
Sattler C, Schrader J, Hüttner M-L, Henle K (2024) Effects of management, habitat and landscape characteristics on biodiversity of orchard meadows in Central Europe: A brief review. Nature Conservation 55: 103-134. https://doi.org/10.3897/natureconservation.55.108688
European researchers have discovered a new species of osmiine bee with an unusual geographic distribution.
Hoplitis onosmaevae is currently found exclusively in the Mercantour National Park in the French Alps and disparate mountainous regions in Turkey and Northern Iraq. The distance of more than 2000 km between these areas highlights a significant biogeographic disjunction.
Described in the open-access journal Alpine Entomology, the new bee species demonstrates unique ecological characteristics such as its distinct nesting behaviour in dead wood.
Presumed to only harvest pollen from Onosma species, it has a long proboscis, which is likely an adaptation to collect nectar from the long-tubed flowers of this genus.
The strongly disjunct distribution of Hoplitis onosmaevae has important implications for conservation. The species likely has a very narrow ecological niche, making it highly susceptible to future changes in its habitats, for example due to changes in agricultural practices or to climate change.
“The consideration of the few known populations of this species in France is very important in the conservation field,” says lead author Matthieu Aubert, freelance entomologist and member of the Observatoire des Abeilles association.
“This study highlights the incredible diversity of wild bees and that we still have a lot to learn from our environment, even in western Europe,” he continues.
The researchers emphasise the need for detailed conservation plans in the southwestern Alps to ensure the survival of Hoplitis onosmaevae, considering its highly specialised ecological niche and consequently its vulnerability to habitat changes. Their proposals for initial conservation steps can be found in the full research paper.
Research paper
Aubert M, Müller A, Praz C (2024) A new osmiine bee with a spectacular geographic disjunction: Hoplitis (Hoplitis) onosmaevae sp. nov. (Hymenoptera, Anthophila, Megachilidae). Alpine Entomology 8: 65-79. https://doi.org/10.3897/alpento.8.118039
At SpongeBoost, Pensoft is to take charge of the project’s identity, while building a strong network, and providing comprehensive knowledge and well-packaged information.
In recent years, Europe’s landscapes have become the victims of extreme events – ranging from floods to droughts – that have caused considerable damage to nature as well as human society.
With the aim to tackle such severe circumstances, the newly-started Horizon Europe-funded project SpongeBoost will be working towards protecting and promoting natural sponge landscapes.
Within SpongeBoost, the functional capacity of sponge landscapes is to be enhanced through building upon existing solutions and their large-scale implementation, but also through innovative approaches.
Pensoft is among the partnering institutions within SpongeBoost and serves as the leader of Work Package #5: “Communication, dissemination, exploitation, showcasing best practices and networking”. WP5 will aim to contribute to the project’s mission by building the overall project identity, building a strong network, and providing comprehensive knowledge and well-packaged information to targeted stakeholders.
The project
Funded by the European Union’s Horizon Europe research and innovation programme with a budget of EUR ~3 million, the project is coordinated by the Helmholtz Centre for Environmental Research (UFZ) and will be developed with the active participation of 10 partnering institutions from seven countries across Europe. Having been officially launched in January 2024, SpongeBoost is to wrap up in December 2027.
The project is part of the EU mission “Adaptation to Climate Change”, whose task is tosupport EU regions, cities and local authorities in their efforts to build resilience against the impacts of climate change.
To officially kickstart the project, the first consortium meeting took place on 21-23 February in Leipzig, Germany. The kick-off meeting saw all 10 partnering institutions meet in person to officially lay the foundation of a promising collaboration that will flourish over the next four years.
The joint mission before the newly formed consortium is to enhance the natural sponge function of wetlands and soils in Europe, aligning with EU policies for climate adaptation, disaster risk reduction and biodiversity. To achieve that, the project plans to employ both bottom-up and top-down approaches, which will foster networking and synergy at the regional and EU level.
SpongeBoost will focus on five main objectives over the next four years:
Conduct a comprehensive literature review to create a standard reference catalogue for securing and enhancing sponge functions in adaptation to climate change. This catalogue will integrate social, economic, technical, and ecological effects and serve as a widely used resource across Europe and beyond.
Build a knowledge base on existing approaches for enhancing sponge functions, and highlight the reasons for success or failure. The goal is to enable regions and communities to replicate effective transformative solutions. Meanwhile, the consortium is to facilitate networking initiatives with other projects and identify suitable pilot sites for monitoring long-term success using the results of previous projects.
Work on the implementation, tests, refinement, and adjustment of best practices and innovative solutions through EU-wide case studies. The goal is to enhance climate resilience to extreme events and enable upscaling from local to EU levels.
Develop a roadmap with practical tools to empower stakeholders, drive transformative change, and integrate sponge solutions into regional, national and European climate adaptation processes to achieve EU Green Deal targets.
Connect communities and compile online resources for climate change adaptation. The goal is to facilitate access and combine a library of tools for restoration and share research findings on soil, water, and groundwater interconnection for replication across Europe.
In addition to leading the “Communication, dissemination, exploitation, showcasing best practices and networking” work package at SpongeBoost, Pensoft is to also assist the Environmental Action Germany (DUH) in the implementation of different innovative communications methods and ideas meant to support the project’s goals.
As part of the creative communication strategy, DUH will take the lead in the development of a “SpongeBooster superhero” character. By creating such a character that will be also featured in comics, the team will translate complex concepts into clear visuals and engaging narratives, thereby shaping the project’s visual identity and letting non-experts join the discourse. The Sponge Booster is to serve as an innovative method to disseminate project knowledge and address barriers with humour while fostering dialogue and avoiding potential conflicts.
International Consortium
The SpongeBoost project brings together a team of 10 partners from seven European countries, spanning research, policy, and management fields. The consortium members, who individually represent various restoration projects, will join forces and expertise to promote collaboration, knowledge exchange and synergies across European regions, to ultimately instil a lasting positive impact on sponge restoration for climate change adaptation.
Stay tuned for more project information on the SpongeBoost website coming soon at: www.spongeboost.eu/. In the meantime, you can follow SpongeBoost on social media on X and Linkedin.
Pensoft will lead the communication, dissemination and exploitation activities of the Horizon Europe project, which aims to reverse pollinator population declines and reduce impacts of pesticides.
Plant protection products (PPP), also known as pesticides, have been identified as one of the primary triggers of pollinator decline. However, significant knowledge gaps and critical procedural limitations to current pesticide risk assessment require attention before meaningful improvements can be realised. The functional group is currently represented by only one species, the honey bee, which does not necessarily share other species’ biological and ecological traits.
Coordinated by The Social-Ecological Systems Simulation (SESS) Centre, Aarhus University and Prof. Christopher J. Topping, PollinERA (Understanding pesticide-Pollinator interactions to support EU Environmental Risk Assessment and policy) aims to move the evaluation of the risk and impacts of pesticides and suggestions for mitigationbeyond the current situation of assessing single pesticides in isolation on honey bees to an ecologically consistent assessment of effects on insect pollinators.
This will be achieved through the development of a new systems-based environmental risk assessment (ERA) scheme, tools and protocols for a broad range of toxicological testing, feeding to in silico models (QSARS, toxicokinetic/toxicodynamic, and ALMaSS agent-based population simulations).
The One System framework builds on the recent roadmap for action on the ERA of chemicals for insect pollinators, developed within the IPol‐ERA project, funded by the European Food Safety Authority (EFSA). The framework will expand the ERA tools currently used for honey bees to include wild bees, butterflies, moths and hoverflies.
Fill ecotoxicological data gaps to enable realistic prediction of the source and routes of exposure and the impact of pesticides on pollinators and their sensitivity to individual pesticides and mixtures.
Develop and test a co-monitoring scheme for pesticides and pollinators across European cropping systems and landscapes, developing risk indicators and exposure information.
Develop models for predicting pesticide toxicological effects on pollinators for chemicals and organisms, improve toxicokinetic/toxicodynamic (TKTD) and population models, and predict environment fate.
Develop a population-level systems-based approach to risk and policy assessment considering multiple stressors and long-term spatiotemporal dynamics at a landscape scale and generate an open database for pollinator/pesticide data and tools.
With more than 20 years of experience in science communication, Pensoft is leading Work Package 6: Communication, Dissemination and Exploitation, that will ensure the effective outreach of PollinERA to its multiple target audiences. Based on the tailor-made communication, dissemination, exploitation and engagement strategies, Pensoft will provide a recognisable visual identity of the project, along with a user-friendly website, social media profiles, promotional materials, newsletters, infographics and videos. Pensoft will also contribute to the stakeholder mapping process and the organisation of various workshops and events.
Coordinated by Prof. Denis Michez (University of Mons), WildPosh aims to significantly improve the evaluation of risk to pesticide exposure of wild pollinators, and enhance the sustainable health of pollinators and pollination services in Europe.
The PollinERA consortium comprises partners from eight European countries that represent a diverse range of scientific disciplines spanning from pollinator ecology, pesticide exposure and toxicological testing, to stakeholder engagement and communications.
As a leader of the Work Package 6: “Dissemination, Multi-stakeholder outreach and synergies,” Pensoft is tasked to build an involved community around OBSGESSION.
Pensoft is to contribute to the OBSGESSION consortium with expertise in science communication by taking care of stakeholders engagement, thereby supporting its goal of improved terrestrial and freshwater biodiversity monitoring. As a leader of the Work Package 6: “Dissemination, Multi-stakeholder outreach and synergies,” Pensoft is tasked to build an involved community around OBSGESSION.
Terrestrial and freshwater biodiversity has been declining at an alarming rate due various factors such as intensification of anthropogenic activities and climate change.
Coordinated by the Finnish Environmental Institute (Syke), OBSGESSION aims to reveal the drivers of biodiversity loss, pinpoint important indicators of ecosystem health and inform sustainability policy.
The project officially kicked off with the first consortium meeting in Tuusula, Finland, between 30th January and 2nd February.
For the coming four years, the joint mission before the newly formed consortium is to integrate biodiversity data sources, such as Earth Observation, with in-situ research, and also cutting-edge ecological models. These will all be made into a comprehensive product for biodiversity management in both terrestrial and freshwater ecosystems.
The project will also spearhead an innovative approach for assessing Essential Biodiversity Variables (EBVs) and their resilience to errors. Through purposely propagating error into biodiversity estimates and comparing the resulting models with ones using correct estimates, the EBV case studies aim to investigate model uncertainties and identify approaches that are more sensitive. Thus, they will inform policy and management about the optimal EBVs, and their key thresholds for conservation.
To demonstrate the implementation of the techniques and methodologies they are to develop within the project; and to respond to the needs of the EU Biodiversity Strategy for 2030, the consortium will focus on six distinct pilot activities:
Investigating and predicting biodiversity change in the European Alps: multi-scale, multi-modal and multi-temporal investigation using remote and in-situ data integration.
Improving habitat classification models: going beyond state-of-the-art in terms of accurate high-resolution mapping of Europe’s habitats, powered by machine learning.
Forecasting ecosystem productivity under disturbances & climate change:incorporating remote sensing EBVs to assess metrics of ecosystem structure and health.
Supporting temperate and boreal forest protection & restoration: through assessing ecosystem conditions via eDNA & image spectroscopy.
Monitoring freshwater ecosystems under disturbances & climate change: utilizing the novel Thematic Ecosystem Change Indices (TECIs).
Ecosystem functioning of the Kokemäenjoki estuary – assessing freshwater & transitional water quality incorporating both in-situ and Earth Observation data.
Through its pilot studies, methodological assessments, data stream integration, and investigating land use cover changes across Europe, OBSGESSION will help improve our understanding of ecosystem vulnerability across a range of specific habitat types, identify driversand pressures to ecosystem change and improve planning and prioritization of restoration measures.
International Consortium
The interdisciplinary OBSGESSION consortium consists of 11 partnering organisations from seven European countries, who bring diverse expertise spanning from remote sensing and Earth observation, to freshwater ecosystems, programming and science communication. Many partners represent acclaimed scientific institutions with rich experience in collaborative EU projects.
Pensoft is amongst the participants of a new Horizon Europe project aiming to better evaluate the risk to wild pollinators of pesticide exposure, enhancing their health & pollination services.
Wild fauna and flora are facing variable and challenging environmental disturbances. One of the animal groups that is most impacted by these disturbances are pollinators, which face multiple threats, driven to a huge extent by the spread of anthropogenic chemicals, such as pesticides.
WildPosh (Pan-european assessment, monitoring, and mitigation of chemical stressors on the health of wild pollinators) is a multi-actor, transdisciplinary project whose overarching mission and ambition are to significantly improve the evaluation of the risk to wild pollinators of pesticide exposure, and enhance the sustainable health of pollinators and pollination services in Europe.
This aligns with the objectives of the European Green Deal and EU biodiversity strategy for 2030, emphasising the need to reduce pollution and safeguard pollinators. WildPosh focuses on understanding the routes of chemical exposure, evaluating toxicological effects, and developing preventive measures. By addressing knowledge gaps in pesticide risk assessment for wild pollinators, the project contributes to broader efforts in biodiversity conservation.
As a leader of Work Package #7: “Communication, knowledge exchange and impact”, Pensoft is dedicated to maximising the project’s impact by employing a mix of channels in order to inform stakeholders about the results from WildPosh and raise further public awareness of wild and managed bees’ health.
Pensoft is also tasked with creating and maintaining a clear and recognisable project brand, promotional materials, website, social network profiles, internal communication platform, and online libraries. Another key responsibility is the development, implementation and regular updates of the project’s communication, dissemination and exploitation plans, that WildPosh is set to follow for the next four years.
For the next four years, WildPosh will be working towards five core objectives:
1) Determine the real-world agrochemical exposure profile of wild pollinators at landscape level within and among sites
2) Characterise causal relationships between pesticides and pollinator health
3) Build open database on pollinator traits/distribution and chemicals to define exposure and toxicity scenario
4) Propose new tools for risk assessment on wild pollinators
5) Drive policy and practice.
Consortium:
The consortium consists of 17 partners coming from 10 European countries. Together, they bring extensive experience in Research and Innovation projects conducted within the Horizon programmes, as well as excellent scientific knowledge of chemistry, modelling, nutritional ecology, proteomics, environmental chemistry and nutritional biology.
A team of experts has created the first database of field studies on the impacts of invasive plants on native species, communities and ecosystems in Europe.
The dataset comprises 266 peer-reviewed publications reporting 4,259 field studies on 104 invasive species across 29 European countries. It is the first harmonised database of its kind at continental scale, and is freely accessible to the scientific community for future studies. Notably, one third of the studies focused on just five species that invade several central European countries.
The comprehensive database indicates that invasive plants impact other plants, animals and microbes, all trophic levels (herbivores, parasites, plants, pollinators, predators, omnivores, decomposers and symbionts) and numerous ecosystem processes.
More than half of the studies were conducted in temperate and boreal forests and woodlands and temperate grasslands. Major knowledge gaps are found in Baltic and Balkan countries, in desert and semi-arid shrublands, subtropical forests and high mountains.
Prof. Montserrat Vilà, coordinator of this task, highlights that the database provides information on whether the invasive species increase, decrease or have a neutral effect on the ecological variable of study. This allows investigation into the circumstances in which the invader has contrasting effects.
The database will be updated as new field studies on the ecological impacts of invasive species are published. “We hope for more studies on species that are still locally rare and with restricted distribution,” Prof. Montserrat Vilà says, “this database is of interest for academic, management and policy-related purposes.”
Vilà M, Trillo A, Castro-Díez P, Gallardo B, Bacher S (2024) Field studies of the ecological impacts of invasive plants in Europe. NeoBiota 90: 139-159. https://doi.org/10.3897/neobiota.90.112368