Eight weird and wonderful species to celebrate World Animal Day

Happy World Animal Day! Today is all about celebrating the incredible species roaming our planet and promoting action for animal rights and welfare.

To mark this special day, we have collected some of our favourite animals published across Pensoft’s journal portfolio.

1. The ‘cute but deadly’ velvet worm

The Tiputini velvet worm (Oroperipatus tiputini). Credit: Roberto José León.

Look at those adorable little legs!

Oroperipatus tiputini is a velvet worm that researchers published as a new species in Zoosystematics and Evolution. These invertebrates are known as “living fossils” because they evolved over 500 million years ago, long before the dinosaurs.

An adult and a juvenile velvet worm on a leaf.
The Tiputini velvet worm (Oroperipatus tiputini) adult and juvenile.

Despite its friendly appearance, the Tiputini velvet worm is an accomplished hunter that shoots a sticky substance from a pair of glands near its face to trap its prey!

Learn more: https://doi.org/10.3897/zse.100.117952

2. The ancient nautilus

Nautilus samoaensis. Credit: Barord et al.

Some creatures look like they belong to an era long ago.

But this one has only just been discovered! Found near American Samoa at a depth of 300 m, Nautilus samoaensis was one of three new nautilius species published in ZooKeys in 2023.

Close up of a nautilus species.
Underwater photos of living Nautilus samoaensis.

Sadly, these enigmatic molluscs with beautiful shells are facing population decline, and even extinction, due to the activity of unregulated fisheries.

Learn more: https://doi.org/10.3897/zookeys.1143.84427

3. The moth called Trump

A close-up photo of a moth's head, with yellow scales resembling hair.
Neopalpa donaldtrumpi.

Any ideas why Neopalpa donaldtrumpi was given its name?

Found in California, Arizona, and some areas of Mexico, this species was named days before Donald J. Trump became the the 45th President of the United States of America.

Four angles of the same moth.
Neopalpa donaldtrumpi.

Researcher Dr Vazrick Nazari hoped that the fame around the blonde-haired moth would raise awareness for the importance of further conservation efforts for the species’ fragile habitat.

Learn more: https://doi.org/10.3897/zookeys.646.11411

4. The stiff-necked stargazer

Three views of a fish whose eyes and mouth point upwards, and one xray scan of the fish.
The longnosed stargazer (Ichthyscopus lebeck).

We think this fish may have taken the advice “keep your chin up” a bit too literally.

The longnosed stargazer (Ichthyscopus lebeck) looks like this for good reason – it buries itself in sand, with just its eyes visible, and leaps upwards to ambush prey.

The first Southern Hemisphere record of this species was published in our journal Acta Ichthyologica et Piscatoria in 2024. 

Learn more: https://doi.org/10.3897/aiep.54.113513

5. The electric-blue tarantula

Juvenile Chilobrachys natanicharum. Credit: Yuranan Nanthaisong.

I’m blue da ba dee da ba d-AHHHHH!

Blue is a rare colour in nature, which is a shame because this tarantula from Thailand looks spectacular. The stylish spider sports iridescent streaks of neon colour on its legs, back, and mouthparts.

A tarantula with electric-blue colouration.
Juvenile Chilobrachys natanicharum. Credit: Yuranan Nanthaisong.

Chilobrachys natanicharum was already known in the pet trade as the electric blue tarantula, but a study published ZooKeys finally confirmed it as a unique species.

Learn more: https://doi.org/10.3897/zookeys.1180.106278

6. The chocolate frog

A brown glossy frog.
Synapturanus danta. Credit: Germán Chávez.

Anything from the trolley, dears?

While it may look like a Wizarding World snack, this burrowing frog species inhabits the soft soil of Amazon peatlands.

A brown glossy frog on a leaf.
Synapturanus danta. Credit: Germán Chávez.

Long known by Peru’s Three Corners Native Community, Synapturanus danta was published as a new species in Evolutionary Systematics in 2022.

Learn more: https://doi.org/10.3897/evolsyst.6.80281

7. The tailless whip scorpion

Black arachnid species on a hand.
Tailless whip scorpion (Phrynus whitei). Credit: Fugus Guy via WikiMedia Commons.

Sorry about this one.

Phrynus whitei is an amblypygid – an order of arachnids also known as whip spiders or tailless whip scorpions. Despite its unsettling appearance, it is generally calm around humans and is non-venomous.

Black and gold arachnid species.
Tailless whip scorpion (Phrynus whitei).

This creepy critter featured in Neotropical Biology and Conservation in an overview of the poorly-know amblypygid fauna of Honduras.

Learn more: https://doi.org/10.3897/neotropical.19.e113507

8. The adorable olinguito

a young fluffy mammal.
Juvenile olinguito (Bassaricyon neblina). Credit: Juan Rendon via savingspecies.org.

Hopefully this makes up for the last entry.

Looking like a cross between a teddy bear and a house cat, the olinigto was the first carnivorous mammal discovered in the Americas for 35 years!

Two pictures of a fluffy mammal on a tree.
The olinguito (Bassaricyon neblina). Credit: Mark Gurney.

Bassaricyon neblina belongs to a group of mammals called the olingos, which are related to raccoons and coatis.

Learn more: https://doi.org/10.3897/zookeys.324.5827

While we have enjoyed collecting a few of our favourite species featured in Pensoft journals, it is important to remember the value of every animal, regardless of cuteness or weirdness.

By supporting research and action that aims to protect our planet’s species, we can continue to enjoy our planet’s bizarre biodiversity that never fails to surprise and delight. Happy World Animal Day!

Low-cost, high-volume imaging for entomological digitization

The flexibility of the imaging rig could benefit many potential users who are looking for an accessible method for larger collections of specimens

Guest blog post by Corey Feng and Dirk Steinke

The demand for the digitization of natural history collections has increased with the advancement of imaging technologies. Large collections composed of millions of insect specimens are exploring efficient strategies and new technologies to digitize them. However, many of these new systems are quite elaborate and expensive, creating a need for more affordable and easy-to-use equipment. 

75-by-47-cm foam platform with pinned insects in dorsal and lateral positions.

Creating a digital image for every specimen is an essential part of the DNA barcoding workflow at the Centre for Biodiversity Genomics (CBG). A newly designed imaging rig has enabled the CBG to quickly and efficiently image specimens at high quality while controlling the specimen’s orientation to emphasize key morphological characters. This system allowed the CBG to take some 190,000 images over the past year.

The SLR rig is placed on a heavy-base table to minimize vibration. The inset shows the actual rig area with specimens on the styrofoam base.

Our new ZooKeys study describes this imaging rig, which was mainly created for pinned specimens. It is inexpensive and easy to install as it uses a camera mounted to a CNC machine rig to photograph specimens at high capacity. By using a foam board to array specimens, the user can choose their orientation, which contrasts some existing methods that do not provide such flexibility. This setup produces 95 high quality images within half an hour.

Panel of example images taken with the SLR rig.

The flexibility of the imaging rig could benefit many potential users who are looking for an accessible method for larger collections of specimens. By alternating various parameters, such as the distance between the camera and specimens or the type of camera and lens used, users can adapt their system to specimens of varying sizes. With further changes to the array, the imaging rig can also be adapted to support imaging specimens on slides, within vials, or other storage solutions.

Research article:

Steinke D, McKeown JTA, Zyba A, McLeod J, Feng C, Hebert PDN (2024) Low-cost, high-volume imaging for entomological digitization. ZooKeys 1206: 315-326. https://doi.org/10.3897/zookeys.1206.123670

How to ensure biodiversity data are FAIR, linked, open and future-proof?

Now concluded Horizon 2020-funded project BiCIKL shares lessons learned with policy-makers and research funders

Within the Biodiversity Community Integrated Knowledge Library (BiCIKL) project, 14 European institutions from ten countries, spent the last three years elaborating on services and high-tech digital tools, in order to improve the findability, accessibility, interoperability and reusability (FAIR-ness) of various types of data about the world’s biodiversity. These types of data include peer-reviewed scientific literature, occurrence records, natural history collections, DNA data and more.

By ensuring all those data are readily available and efficiently interlinked to each other, the project consortium’s intention is to provide better tools to the scientific community, so that it can more rapidly and effectively study, assess, monitor and preserve Earth’s biological diversity in line with the objectives of the likes of the EU Biodiversity Strategy for 2030 and the European Green Deal. Their targets require openly available, precise and harmonised data to underpin the design of effective measures for restoration and conservation, reminds the BiCIKL consortium.

Since 2021, the project partners at BiCIKL have been working together to elaborate existing workflows and links, as well as create brand new ones, so that their data resources, platforms and tools can seamlessly communicate with each other, thereby taking the burden off the shoulders of scientists and letting them focus on their actual mission: paving the way to healthy and sustainable ecosystems across Europe and beyond.

Now that the three-year project is officially over, the wider scientific community is yet to reap the fruits of the consortium’s efforts. In fact, the end of the BiCIKL project marks the actual beginning of a European- and global-wide revolution in the way biodiversity scientists access, use and produce data. It is time for the research community, as well as all actors involved in the study of biodiversity and the implementation of regulations necessary to protect and preserve it, to embrace the lessons learned, adopt the good practices identified and build on the knowledge in existence.

This is why amongst the BiCIKL’s major final research outputs, there are two Policy Briefs meant to summarise and highlight important recommendations addressed to key policy makers, research institutions and funders of research. After all, it is the regulatory bodies that are best equipped to share and implement best practices and guidelines.

Most recently, the BiCIKL consortium published two particularly important policy briefs, both addressed to the likes of the European Commission’s Directorate-General for Environment; the European Environment Agency; the Joint Research Centre; as well as science and policy interface platforms, such as the EU Biodiversity Platform; and also organisations and programmes, e.g. Biodiversa+ and EuropaBON, which are engaged in biodiversity monitoring, protection and restoration. The policy briefs are also to be of particular use to national research funds in the European Union.

One of the newly published policy briefs, titled “Uniting FAIR data through interlinked, machine-actionable infrastructures”, highlights the potential benefits derived from enhanced connectivity and interoperability among various types of biodiversity data. The publication includes a list of recommendations addressed to policy-makers, as well as nine key action points. Understandably, amongst the main themes are those of wider international cooperation; inclusivity and collaboration at scale; standardisation and bringing science and policy closer to industry. Another major outcome of the BiCIKL project: the Biodiversity Knowledge Hub portal is noted as central to many of these objectives and tasks in its role of a knowledge broker that will continue to be maintained and updated with additional FAIR data-compliant services as a living legacy of the collaborative efforts at BiCIKL.

The second policy brief, titled “Liberate the power of biodiversity literature as FAIR digital objects”, shares key actions that can liberate data published in non-machine actionable formats and non-interoperable platforms, so that those data can also be efficiently accessed and used; as well as ways to publish future data according to the best FAIR and linked data practices. The recommendations highlighted in the policy brief intend to support decision-making in Europe; expedite research by making biodiversity data immediately and globally accessible; provide curated data ready to use by AI applications; and bridge gaps in the life cycle of research data through digital-born data. Several new and innovative workflows, linkages and integrative mechanisms and services developed within BiCIKL are mentioned as key advancements created to access and disseminate data available from scientific literature. 

While all policy briefs and factsheets – both primarily targeted at non-expert decision-makers who play a central role in biodiversity research and conservation efforts – are openly and freely available on the project’s website, the most important contributions were published as permanent scientific records in a BiCIKL-branded dedicated collection in the peer-reviewed open-science journal Research Ideas and Outcomes (RIO). There, the policy briefs are provided as both a ready-to-print document (available as supplementary material) and an extensive academic publication.

Currently, the collection: “Towards interlinked FAIR biodiversity knowledge: The BiCIKL perspective” in the RIO journal contains 60 publications, including policy briefs, project reports, methods papers, conference abstracts, demonstrating and highlighting key milestones and project outcomes from along the BiCIKL’s journey in the last three years. The collection also features over 15 scientific publications authored by people not necessarily involved in BiCIKL, but whose research uses linked open data and tools created in BiCIKL. Their publications were published in a dedicated article collection in the Biodiversity Data Journal.

***

Visit the Biodiversity Community Integrated Knowledge Library (BiCIKL) project’s website at: https://bicikl-project.eu/.

Don’t forget to also explore the Biodiversity Knowledge Hub (BKH) for yourself at: https://biodiversityknowledgehub.eu/ and watch the BKH’s introduction video

Highlights from the BiCIKL project are also accessible on Twitter/X from the project’s hashtag: #BiCIKL_H2020 and handle: @BiCIKL_H2020.

A new species of rare pseudoscorpion named after the Slovak president

Olpium caputi, named after Zuzana Čaputová, was discovered on the island Tahiti in French Polynesia

There are about 25,000 islands in the Pacific Ocean. The most remote of them are in North and East Polynesia, the Hawaiian Islands, and French Polynesia. Biologists have been attracted to these regions since the 18th century, but French Polynesia has received much less attention compared to the Hawaiian Islands.

A view of the area where Olpium caputi was found. Photo by Frédéric A. Jacq

Contributions to our knowledge of the pseudoscorpions of French Polynesia date from the 1930s and are associated with the Pacific Entomological Survey. Since then, the French Polynesian pseudoscorpion fauna has consisted of only four known species.

A female individual of Olpium caputi.

Thanks to international cooperation, a team of enthusiastic scientists has published the first discovery of a new species of pseudoscorpion from French Polynesia. Between 2017 and 2020, they studied French Polynesia’s fauna and environment for the French Polynesian Agricultural Service and as a part of a large-scale survey of arthropods. During their research work, they collected a few pseudoscorpion specimens on Huahine and Tahiti in the Society Islands.

Among them is a new species named Olpium caputi, collected by sieving moss at 1,450 m about sea level on the Mont Marau Summit, Tahiti, one of the Society Islands archipelago. Its scientific name honours Zuzana Čaputová, the President of Slovakia.

Zuzana Čaputová. Photo by Jindřich Nosek (NoJin) under a CC BY-SA 4.0 license.

“As a female leader, she takes a strong stance and supports women and scientists. Even in the 21st century, women in science or top positions are rare. The rarity of the research in French Polynesia, the uniqueness of the discovery, and the fact that the new species is a female, led us to name it after this inspiring woman who can be a role model of courage and perseverance for many women,” says Jana Christophoryová, who led the study.

The paper is published in the open-access, peer-reviewed journal ZooKeys.

The team:

Katarína Krajčovičová of Bratislavské regionálne ochranárske združenie – BROZ, Bratislava, and Jana Christophoryová of Comenius University, Bratislava, are both zoologists, who specialize in the taxonomy, distribution, and ecology of pseudoscorpions. Frédéric Jacq, botanist, and Thibault Ramage, entomologist, are independent naturalists who have been working on improving the faunistic and taxonomic knowledge of French Polynesia for over 15 years.

Research article:

Krajčovičová K, Ramage T, Jacq FA, Christophoryová J (2024) Pseudoscorpions (Arachnida, Pseudoscorpiones) from French Polynesia with first species records and description of new species. ZooKeys 1192: 29-43. https://doi.org/10.3897/zookeys.1192.111308

Smithsonian’s Dr Torsten Dikow appointed Editor-in-Chief of ZooKeys

Dikow, an esteemed entomologist specialising in Diptera and cybertaxonomy, is the new Editor-in-Chief of the leading scholarly journal in systematic zoology and biodiversity

Esteemed entomologist specialising in true flies (order Diptera) and cybertaxonomy, Dr Torsten Dikow was appointed as the new Editor-in-Chief of the leading open-access peer-reviewed journal in systematic zoology and biodiversity ZooKeys.

Dikow is to step into the shoes of globally celebrated fellow entomologist and colleague at the Smithsonian and founding Editor-in-Chief of ZooKeys Dr Terry Erwin, who sadly passed away in May, 2020, leaving behind hefty scientific legacy and immeasurable admiration and fond memories

Today, Dikow is a Research Entomologist and Curator of Diptera and Aquatic Insects at the Smithsonian National Museum of Natural History (Washington, DC, USA), where his research interests encompass the diversity and evolutionary history of the superfamily Asiloidea – or asiloid flies – comprising curious insect groups, such as the assassin flies / robber flies and the mydas flies. Amongst an extensive list of research publications, Dikow’s studies on the diversity, biology, distribution and systematics of asiloid flies include the description of 60 species of assassin flies alone, and the redescription of even more through comprehensive taxonomic revisions.

Dikow obtained his M.S. in Zoology from the Universität Rostock (Germany) and Ph.D. in Entomology from Cornell University (New York, USA) with three years of dissertation research conducted at the American Museum of Natural History (AMNH). 

During his years as a postdoc at the Field Museum (Illinois, USA), Dikow was earnestly involved in the broader activities of the Encyclopedia of Life through its Biodiversity Synthesis Center (BioSynC) and the Biodiversity Heritage Library (BHL). There, he would personally establish contacts with smaller natural history museums and scientific societies, and encourage them to grant digitisation permissions to the BHL for in-copyright scientific publications. Dikow is a champion of cybertaxonomic tools and making biodiversity data accessible from both natural history collections and publications. He has been named a Biodiversity Open Data Ambassador by the Global Biodiversity Information Facility (GBIF).

Dikow is no stranger to ZooKeys and other journals published by the open-access scientific publisher and technology provider Pensoft. For the past 10 years, he has been amongst the most active editors and a regular author and reviewer at ZooKeysBiodiversity Data Journal and African Invertebrates.

“Publishing taxonomic revisions and species descriptions in an open-access, innovative journal to make data digitally accessible is one way we taxonomists can and need to add to the biodiversity knowledge base. ZooKeys has been a journal in support of this goal since day one. I am excited to lend my expertise and enthusiasm to further this goal and continue the development to publish foundational biodiversity research, species discoveries, and much more in the zoological field,”

said Dikow.

Dikow took on his new role at ZooKeys at a time when the journal had just turned 15 years on the scholarly publishing scene. In late 2020, the scientific outlet also marked the publication of its 1000th journal volume.

***

Visit the journal’s website and follow ZooKeys on X (formerly Twitter) and Facebook. You can also follow Torsten Dikow on X.

***

About ZooKeys:

ZooKeys is a peer-reviewed, open-access, rapidly disseminated journal launched to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. ZooKeys aims to apply the latest trends and methodologies in publishing and preservation of digital materials to meet the highest possible standards of the cybertaxonomy era.

ZooKeys publishes papers in systematic zoology containing taxonomic/faunistic data on any taxon of any geological age from any part of the world with no limit to manuscript size. To respond to the current trends in linking biodiversity information and synthesising the knowledge through technology advancements, ZooKeys also publishes papers across other taxon-based disciplines, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics, etc. 

Celebrating ZooKeys: 15 years of taxonomic excellence

We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality.

Today, we are thrilled to share with you the celebration of a remarkable milestone in our journey. In July, we marked our 15th birthday – a decade and a half of fostering the free exchange of ideas, data, and knowledge in the vast realm of zoology.

We look back on this incredible journey with pride and appreciation for the countless researchers, authors, reviewers, and supporters who have helped make this dream a reality. From the very inception, our goal has been to create a platform where zoological discoveries can shine brightly, accessible to all who share a passion for the wonders of the animal kingdom.

ZooKeys was born out of our collective desire to push the boundaries of scientific publishing, to embrace innovation, and to provide a space where the brightest minds in zoology could come together. Over the years, we have not only achieved this but, thanks to our publisher Pensoft, have also become pioneers in implementing cutting-edge technologies to enhance the way knowledge is shared and absorbed.

ZooKeys was the first of Pensoft’s open-access journals, set up to accelerate research and free information exchange in taxonomy, phylogeny, biogeography and evolution of animals. Starting as a taxonomic journal, it quickly expanded to other zoology-related sciences, such as ecology, molecular biology, genomics, evolutionary biology, palaeontology, behavioural science, bioinformatics etc… The journal has been thriving since its inception and is currently considered as one of the most prolific and liked Open Access journals in zoology. 

Erwin T, Stoev P, Penev L (2018) ZooKeys anniversary: 10 years of leadership toward open-access publishing of zoological data and establishment at Pensoft of like-minded sister journals across the biodiversity spectrum. ZooKeys 770: 1-8. https://doi.org/10.3897/zookeys.770.28105

One of our proudest achievements was being the first taxonomic journal to introduce semantic tagging and content enhancements, revolutionizing the way information is presented and accessed. This endeavor, which began with our 50th issue in 2010, marked a turning point in scholarly publishing.

The cover of the first issue of ZooKeys.

As of today, we’ve published more than 180,000 pages of research in almost 7,000 articles that have amassed more than 3 million views. Here is a Top 5 of our most popular articles ever:

  • Helgen K, Pinto M, Kays R, Helgen L, Tsuchiya M, Quinn A, Wilson D, Maldonado J (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324: 1-83. https://doi.org/10.3897/zookeys.324.5827, with 80,500 views,
  • Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1-776. https://doi.org/10.3897/zookeys.583.7084 with 69,543 views,
  • Ledford J, Griswold C, Audisio T (2012) An extraordinary new family of spiders from caves in the Pacific Northwest (Araneae, Trogloraptoridae, new family). ZooKeys 215: 77-102. https://doi.org/10.3897/zookeys.215.3547 with 65,446 views,
  • Ibrahim N, Sereno PC, Varricchio DJ, Martill DM, Dutheil DB, Unwin DM, Baidder L, Larsson HCE, Zouhri S, Kaoukaya A (2020) Geology and paleontology of the Upper Cretaceous Kem Kem Group of eastern Morocco. ZooKeys 928: 1-216. https://doi.org/10.3897/zookeys.928.47517 with 64,456 views,
  • Bouchard P, Bousquet Y, Davies A, Alonso-Zarazaga M, Lawrence J, Lyal C, Newton A, Reid C, Schmitt M, Slipinski A, Smith A (2011) Family-Group Names In Coleoptera (Insecta). ZooKeys 88: 1-972. https://doi.org/10.3897/zookeys.88.807 with 63,524 views.

Our journey would have been incomplete without you – our avid readers and supporters. Your hunger for knowledge, your curiosity, and your unwavering support have been the wind beneath our wings, motivating us to do better, and reinforcing the importance of what we do. As we celebrate our 15th birthday, we extend our deepest gratitude to each one of you who has been a part of our history.

Part of an illustration by Nancy Halliday from the most popular ZooKeys paper to date.

Looking ahead, the future of ZooKeys looks as bright as ever. We are committed to continuing our legacy of innovation, collaboration, and accessibility. Our goal remains steadfast – to be a beacon of knowledge, a platform that fosters discoveries, and a source of inspiration for the next generation of zoological minds.

As we celebrate our 15th anniversary, we are filled with a sense of awe and wonder at the remarkable achievements we have collectively made. Thank you for being a part of this incredible journey. Here’s to the next  15 years and beyond, as we continue to explore, discover, and celebrate the extraordinary diversity of life on Earth.

A decade of empowering biodiversity science: celebrating 10 years of Biodiversity Data Journal

Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Today, 16 September 2023, we are celebrating our tenth anniversary: an important milestone that has prompted us to reflect on the incredible journey that Biodiversity Data Journal (BDJ) has been through.

From the very beginning, our mission was clear: to revolutionise the way biodiversity data is shared, accessed, and harnessed. This journey has been one of innovation, collaboration, and a relentless commitment to making biodiversity data FAIR – Findable, Accessible, Interoperable, and Reusable.

Over the past 10 years, BDJ, under the auspices of our esteemed publisher Pensoft, has emerged as a trailblazing force in biodiversity science. Our open-access platform has empowered researchers from around the world to publish comprehensive papers that seamlessly blend text with morphological descriptions, occurrences, data tables, and more. This holistic approach has enriched the depth of research articles and contributed to the creation of an interconnected web of biodiversity information.

In addition, by utilising ARPHA Writing Tool and ARPHA Platform as our entirely online manuscript authoring and submission interface, we have simplified the integration of structured data and narrative, reinforcing our commitment to simplifying the research process.

One of our most significant achievements is democratising access to biodiversity data. By dismantling access barriers, we have catalysed the emergence of novel research directions, equipping scientists with the tools to combat critical global challenges such as biodiversity loss, habitat degradation, and climate fluctuations.

We firmly believe that data should be openly accessible to all, fostering collaboration and accelerating scientific discovery. By upholding the FAIR principles, we ensure that the datasets accompanying our articles are not only discoverable and accessible, but also easy to integrate and reusable across diverse fields.

As we reflect on the past decade, we are invigorated by the boundless prospects on the horizon. We will continue working on to steer the global research community towards a future where biodiversity data is open, accessible, and harnessed to tackle global challenges.

Ten years of biodiversity research

To celebrate our anniversary, we have curated some of our most interesting and memorable BDJ studies from the past decade.

  • Recently, news outlets were quick to cover a new species of ‘snug’ published in our journal.
  • This Golden Retriever trained to monitor hermit beetle larvae proved once again the incredible capabilities of our canine friends.
Teseo, the Golden Retriever monitoring hermit beetle larvae
  • Who could forget this tiny fly named after the former Governor of California?
  • Or this snail named after climate activist Greta Thunberg?
Craspedotropis gretathunbergae

New discoveries are always exciting, but some of our favourite research focuses on formerly lost species, back where they belong.

  • Like the griffon vulture, successfully reintroduced to Bulgaria after fifty years.

Citizen science has shown time and time again that it holds an important position in biodiversity research.

  • This group, for example, who found a beetle the size of a pinhead in Borneo.
“Life Beneath the Ice”, a short musical film about light and life beneath the Antarctic sea-ice by Dr. Emiliano Cimoli

We extend our heartfelt gratitude to our authors, reviewers, readers, and the entire biodiversity science community for being integral parts of this transformative journey. Together, we have redefined scientific communication, and we will continue to push the boundaries of knowledge.

Follow BDJ on social media:

New species of spiny mouse discovered in rainforest

The new species was discovered in Ecuador, and is the 14th of its genus to be identified in the past five years.

A new species of spiny mouse has been discovered in Ecuador, making it the 14th of its genus to be identified in the past five years. Neacomys marci, which was previously confused with another species, is around the length of a tennis ball, with a long tail, pale suede belly fur and a white throat.

New species of spiny mouse pictured in its natural habitat.
Live specimen of new species Neacomys marci in its natural habitat.
Photo by: Jorge Brito

Discovered in the Chocó biogeographic region in northwestern Ecuador, it is the 24th formally recognised species in its genus, which has seen significant upheaval in recent years.

Researchers Nicolás Tinoco, Pontificia Universidad Católica del Ecuador (Quito), Claudia Koch, Leibniz Institute for the Analysis of Biodiversity Change (Germany), Javier E. Colmenares-Pinzón, Universidad Industrial de Santander (Colombia) and Jorge Brito, Instituto Nacional de Biodiversidad (Quito, Ecuador) published their description of the rodent in the open access journal Zookeys.

Neacomys is a widely distributed genus of small spiny or bristly rodents that occupy habitats in eastern Panama and the northern half of South America. Since 2017, studies of the genus have been remarkably dynamic, resulting in the description of several new species.

New species of spiny mouse pictured in its natural habitat.
Live specimen of new species Neacomys marci in its natural habitat.
Photo by: Jorge Brito

However, as there are still many unexplored areas in South America and adjacent Central America (Panama), some of the currently recognised species have not been studied thoroughly, and the true diversity of the genus may be underestimated.

The Chocó biogeographic region is considered one of the most diverse biodiversity hotspots in South America, but one of the least studied despite its great size (along the Pacific coasts of Panama, Colombia and Ecuador). The rainforests of northwestern Ecuador have high biodiversity and endemism due to the influence of the Chocó and the Andes Mountains.

Natural habitat of new species of spiny mouse.
Habitat where specimens of Neacomys marci were collected in the study.
Photo by: Jorge Brito

Major reviews of museum collections and increased field collection efforts have helped scientists understand Neacomys marci and other species. Molecular analysis is also being used to assist with more accurate animal group identification.

The new species was named after Marc Hoogeslag of Amsterdam, the Netherlands, who was co-founder and leader of the International Union for Conservation of Nature – Netherlands Land Acquisition Fund, which helps local groups around the world establish new ecological reserves and conserve endangered species. The EcoMinga Foundation‘s Manduriacu Reserve, home to this new species, is one of many reserves that have benefited from Hoogeslag’s program.

Original Source:

Tinoco N, Koch C, Colmenares-Pinzón JE, Castellanos FX, Brito J (2023) New species of the Spiny Mouse genus Neacomys (Cricetidae, Sigmodontinae) from northwestern Ecuador. ZooKeys 1175: 187-221. https://doi.org/10.3897/zookeys.1175.106113

Follow ZooKeys on social media:

The Venom Spider: new genus named after Tom Hardy’s Marvel character

Researchers referenced the British actor and Spider-Man villain due the unusual pattern on the Australian arachnid’s abdomen.

Venomius tomhardyi pictured next to an illustration of Tom Hardy’s Venom character.
Photo by Rossi et al. Illustration by Zeeshano0 via Pixabay.

Tom Hardy and his Marvel character Venom have given their names to a newly discovered Australian spider. The genus Venomius and its only current species Venomius tomhardyi were described following an expedition to Tasmania.

Scientists MSc Giullia Rossi, Dr Pedro Castanheira and Dr Volker Framenau from Murdoch University ( Perth, Australia) partnered with Dr Renner Baptista from the Federal University of Rio de Janeiro (Brazil) to describe the new genus of orb-weaving spiders published in the open access journal Evolutionary Systematics.

Tom Hardy portrays Eddie Brock and his alter-ego Venom, an antihero closely associated with Spider-Man, across two Marvel films and gives his name to the sole species of the new genus. The distinctive black spots on the arachnid’s abdomen reminded the scientists of Venom’s head, inspiring them to select the unusual name.

Annotated image showing five angles of a spider.
Venomius tomhardyi male holotype. Scale bars: 2 mm (A, B); 0.2 mm (C–E).
Photos by Rossi et al.

The genus belongs to the Araneidae family of spiders, or Araneae, that build upright circular webs to capture prey. Despite resembling the related genus Phonognatha as both do not have tubercles on the abdomen, the newly described spiders are distinct in their behaviour of creating silk-lined holes in the branches of trees for shelter, as well as their different genitalia.

The holotype of the new species was discovered and subsequently preserved at the Queen Victoria Museum and Art Gallery following an expedition to Tasmania, Victoria, South Australia and Western Australia.

“This is part of a long-term research that aims to document the entire Australian spider fauna, which will be of extreme importance for conservation management plans and the continuation of the decadal plan for taxonomy and biosystematics in Australia and New Zealand.”

Dr. Pedro Castanheira, contributing author.
Distribution records of Venomius tomhardyi.
Image by Rossi et al.

Researchers also sourced supplementary specimens from scientific arachnology collections, with researchers examining approximately 12,000 records in Australian and overseas institutions.

“It is really important to keep describing new spiders to assess the total biodiversity of these predators in Australia,” added the study’s first author MSc Giullia Rossi.

***

Original source:

Rossi GF, Castanheira PS, Baptista RLC, Framenau VW (2023) Venomius, a new monotypic genus of Australian orb-weaving spiders (Araneae, Araneidae). Evolutionary Systematics 7(2): 285-292. https://doi.org/10.3897/evolsyst.7.110022

***

Follow the Evolutionary Systematics journal on Twitter and Facebook.

Psychedelic rock gecko among dozens of species in need of further conservation protection in Vietnam

Researchers recommend IUCN CPSG’s One Plan Approach to Conservation measures, which include both habitat conservation and increasing the number of threatened species in breeding stations and zoos. 

Endangered psychedelic rock gecko (Cnemaspis psychedelica)
Photo by Thomas Ziegler. Licence: CC-BY.

Further conservation measures are required to protect Vietnamese reptiles, such as the psychedelic rock gecko (Cnemaspis psychedelica), from habitat loss and overharvesting, concludes a new report, published in the open-access scientific journal Nature Conservation.

Having identified areas of high reptile diversity and large numbers of endangered species, the study provides a list of the 50 most threatened species as a guide for further research and conservation action in Vietnam. 

The study, based on the bachelor thesis of Lilli Stenger (University of Cologne, Germany), recommends IUCN CPSG’s One Plan Approach to Conservation measures, which, next to improved habitat conservation, also involves increasing the number of threatened species in breeding stations and zoos to maintain populations suitable for restocking. 

Co-authors of the report are Anke Große Hovest (University of Cologne, Germany), Truong Quang Nguyen (Vietnam Academy of Science and Technology), Cuong The Pham, (Vietnam Academy of Science and Technology), Anna Rauhaus (Cologne Zoo, Germany), Minh Duc Le (Vietnam National University), Dennis Rödder (Leibniz Institute for the Analysis of Biodiversity Change, Germany) and Thomas Ziegler (University of Cologne and Cologne Zoo, Germany).

“Modern zoos, as well as local facilities, can play a crucial role in not only conducting or financially supporting in situ conservation projects, that is to say in nature, but also by protecting species from extinction through maintaining ex situ assurance colonies to reinforce in situ conservation programs,”

said Prof. Dr. Thomas Ziegler, Vietnam conservation team member and coordinator from Cologne Zoo, Germany.
Endangered Truong Son pit viper or Quang Binh pit viper (Trimeresurus truongsonensis).
Photo by Thomas Ziegler. Licence: CC-BY.

The scientists identified 484 reptile species known to Vietnam, aiming to provide a baseline to authorities, conservationists, rescue centers, and zoos, so they can follow up with appropriate conservation measures for endangered species. They note that the number is likely to go up, as the country is regarded as a top biodiversity hotspot, and the rate of new reptile species discoveries remains high.

According to the IUCN Red List, 74 of the identified species are considered threatened with extinction, including 34 endemic species. For more than half of Vietnam’s endemic reptiles (85 of 159), the IUCN Red List status is either missing or outdated, and further research is imperative for these species, the researchers say.

Vietnam has a high level of reptile diversity and an outstanding number of endemic species. The species richness maps in the study revealed the Central Annamites in central Vietnam to harbor the highest endemic species diversity (32 species), which highlights it as a site of particular importance for reptile conservation. Alarmingly, a protected area analysis showed that 53 of the 159 endemic species (33.2%) including 17 threatened species, have been recorded exclusively from unprotected areas, such as the Psychedelic Rock Gecko.

The Critically Endangered Annam pond turtle (Mauremys annamensis) is one of the most endangered turtle species in Vietnam and in the world. It is not known from any protected area. Despite likely being extinct in the wild,  ex situ conservation programs have been implemented in time with a high number of individuals being kept and bred in zoos and stations and now ready for restocking actions.
Photo by Thomas Ziegler. Licence: CC-BY.

In General, Vietnam is considered a country with high conservation priority due to habitat loss and overharvesting for trade, traditional medicine and food.

Globally, reptiles are considered a group of special conservation con­cern, as they play an important role in almost all ecosystems and often have relatively small distri­bution ranges, making them especially vulnerable to human threats.

***

Original source:

Stenger L, Große Hovest A, Nguyen TQ, Pham CT, Rauhaus A, Le MD, Rödder D, Ziegler T (2023) Assessment of the threat status of reptile species from Vietnam – Implementation of the One Plan Approach to Conservation. Nature Conservation 53: 183 221. https://doi.org/10.3897/natureconservation.53.106923

***

Follow Nature Conservation on Facebook and Twitter.